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INTRODUCTION

System identification is the process of constructing a mathematical model from input and output
data for a system under testing, and characterizing the system uncertainties and measurement
noises. The mathematical model structure can take various forms depending upon the intended
use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a
collection of functions, written in MATLAB! language and expressed in M-files, that implements
a variety of modern system identification techniques. For an open-loop system, the central
features of the SOCIT are functions for identification of a system model and its corresponding
forward and backward observers directly from input and output data. The system and its
observers are represented by a discrete model. The identified model and observers may be used
for controller design of linear systems as well as identification of modal parameters such as
dampings, frequencies, and mode shapes. For a closed-loop system, the central features of the
SOCIT include identification of an open-loop model, an observer and its corresponding
controller gain directly from input and output data. The basic package is capable of:

1- Identifying system, forward and backward observer Markov parameters (pulse responses)
from input and output time histories.

2- Constructing a state space model from pulse responses.

3. Identifying a state space model and its corresponding forward and backward observer gains

* directly from input and output time histories.

4- Identifying a forward observer/Kalman filter gain with a given state space model, and input
and output time histories.

5- Computing variance and bias for identified modal parameters using Monte Carlo and
perturbation procedures.

6- Computing forward prediction errors and backward smoothing errors for any of the models
generated.

7- Identifying a state space model, and its corresponding controller gain and observer/Kalman
filter gain directly from input, output and control force time histories.

The unique features of this package are:

1- No nonlinear programming involved.

2- No a priori noise information required.

3- Guided model order selection.

4- Direct identification of system & observer/Kalman filter.
5- Direct identification of closed-loop controller.

6- Suitable for stable & unstable systems.

1 @ Copyright 1985-91, by Mathworks, Inc. All rights rescrved
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SYSTEM/OBSERVER/CONTROLLER
IDENTIFICATION TOOLBOX

Reference
Page

arx b - calculates backward observer Markov parameters and residual error ......... 11
arx_bat - calculates observer Markov parameters and prediction €rTor. ........ccuueee. 11
arxc - computes the combined observer/controller Markov parameters

from feedback control input and output data.........ceeevvmnnrneninniiiiinnennn. 14
arx_fb - calculates forward and backward observer Markov parameters,

and their residual eITOTS........covciivciiiiiiiiiiniii e 11
arx_ps - calculates observer Markov parameters from pulse response samples......... 16
bk diag - wransforms the modal form into a real block diagonal form. ................... 18
block_tr - computes matrix block transposition. ............cveniinnniicnnnne 20
cpulse - converts rich input responses to pulse response time histories. ............... 21
era - identifies a state space model from pulse response time histories

using system realization theory (ERA). ....cccccovviiiniininiiiiinininnnne. 23
eradc - identifies a state space model from pulse response time histories

using a data correlation technique (ERA/DC). ....ooviiiiiiniiniinnnicnnnnen 23
freq_pt - plots the transfer function representation of a discrete time system............ 27
hankl - forms a Hankel matrix from Markov parameters...........ccoveerervneereeanes 29
hankldc - forms a data correlation matrix for eradc........c.cccovvereinnnceccninnccnnnn 30
k_abcd - identifies an Observer filter gain matrix from test data for a known

discrete system model to whiten the stochastic residual. .......ccoeeueeennes 31
m2p - rearranges a Markov parameters sequence in the form of pulse

TESPONSE SAMPIES. covrvrviniiiiiiiiiii e 33
mar_com - computes a specified number of system Markov parameters from

observer Markov parameters. ........... U PPURRPRN 34
mar_oc - computes a specified number of system, observer, and controller

Markov parameters from observer/controller Markov parameters. ............ 36
mar_sep - equivalent to mar_com but with separate observer Makov parameters........ 34
mar_yoc - computes a specified number of system, observer, and controller

Markov parameters from feedback control inputs and outputs................. 38
match - matches the eigenvalues identified from forward and backward models...... 40
modal - computes a reduced stable or unstable model in modal coordinates........... 42
monera - calculates variance of ERA identified parameters using the Monte

Carlo approach. .....ccciiiiiiiiiiiii e, 43
ocid - identifies a state space model, an observer gain, and a controller

gain from closed-loop experimental data. .........ccoceviiiiiiniiinnnnneen, 45



okid - identifies simultaneously a state space model and an observer gain

from input and output data........ccceeiriniiniiiiini 50

okid_b - modified version of okid using a backward observer..........ccooeevvueen... 50
okid_fb - combined version of okid and okid_b using forward and backward

ObSEIVErS. .oiiviniiiiiiiiiiiniinaens et rereere e e bt aenes 50
okid_p - identifies a state space model from pulse response samples............ceuun.. 50
p2m' - rearranges pulse response samples in the form of Markov parameters

SEQUEMNCE.  cevierrrsrriersueenrrnrnariararerrarnrrrarsrraarasassasersaenssarassansenns 62
peradc - calculates the variance and bias of ERA/DC identified parameters

for single input and single output SyStemS. .......ccccccevviiiiinrirniinninans 63
pred_err - computes prediction error from estimated observer Markov

PATAMEIETS.  truuiriiertiinieeiienaeiteeetrsertenteersesernsaasanesnnerssernssane 65
pred_efb - computes prediction and smoothing errors from estimated

forward and backward observer Markov parameters. .........ccceveeernnn. 65
pred_erb - computes smoothing errors from estimated backward parameters............. 65
pulse - computes pulse response samples from general input and output data......... 67
ryucovar -computes the left correlation matrix associated with the feedback

control input for an observer/controller identification...........cc.ccevevirners. 69
separate - separates a given matrix sequence into tWO SEQUENCES........cuvueereereerennnns 71
svpm - calcalates modal observability matrix and the singular value

contribution of each mode to the pulse response samples........cccccerueneeee. 72
svra - identifies a state space model from input and output data using a

state vector realization techniquUe. .......ccocvcvrreernsserrsereonerninmermenn. 74
uy_stack - computes a stacked matrix with inputs and OuUtputs. ......c.cceceeerriveccrecncs 76
y_closed - reconstructs closed-loop response time histories using ocid

identified system, observer, and controller gain matrices. ........c.cccoeueunee 77
y_esti - reconstructs outputs using an identified observer. .........ccccovvvvivnnnennns 78
y_pred - reconstructs outputs using an identified system model. ...........ccvvevrennens 79
yucovar - computes auto-correlation and cross-correlation matrices between

inputs and OULPULS. ..iiveeiiiiiiiiiiiiriii e eens 80
yucovfb - computes forward and backward auto-correlation and cross-

correlation matrices between inputs and outputs. .........coeeveivieicinnninnn. 80
yucov_b - computes backward auto-correlation and cross-correlation matrices

between inputs and OUIPULS. .oecreveviiiiiiniiriiiimmeinnnn e e 80
yycovar - computes the left and right output residual correlation matrix. ................ 83



Road Map for Identification of an
Open-Loop System

(general input/output data)

Input and Output Time Histories

Observer Markov
Parameters
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wi_| |

System Markov Observer Gain
Parameters Markov _Parameters

okid_b
okid_fb

System Matrices A, B, C, D
Observer Gain Matrix G

Note that Markov parameters also mean pulse response time histories.



Road Map for Identification of an

Open-Loop System

(pulse response time histories)

Pulse Response Time Histories

Observer Markov
Parameters
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Note that Markov parameters also mean pulse response time histories.



Road Map for Identification of a
Closed-Loop System

(general input/output data)

Input, Output and Control Force
Time Histories

Observer/Controller
Markov Parameters

|
|
|
l
|-
' mar_oc | mar_yoc
' Y
| .
I l
ocid | Y
: System Markov Observer Gain Controller Gain
|___Parameters Markov Parameters|| Markov Parameters
|
| l m2p y l
| ,
|
| era | eradc
|

System Matrices A, B, C, D
Observer Gain Matrix G
Controller Gain F

Note that Markov parameters also mean pulse response time histories.
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arx_b,arx_bat,arx_fb
Purpose:

Compute observer Markov parameters.
Synopsis:

[Ybfl=arx_b(m,r.u,y,p,icl)
[Yfl=arx_bat(m,r,u,y.p,ic2)
[Yf.Yb]=arx_fb(m,r,u,y,p,ic2)

Description:

The function computes observer Markov parameters from input/output data. The identified
observer system is deadbeat of order p. Given [ samples, r inputs, and m outputs, the input
matrix % must have dimensions /x 7 and output y !xm. Multiple experiments may be
used in these functions. In that case, the input matrix u becomes I x (rn,) where n, is the
number of experiments, and the output matrix becomes [ x (mn,). Function arx_bat solves
the least squares problem of a forward observer;

y, =YY
where
Y, = [¥(0) y(1)---y(I - 1)]

Y,=[D CB CAB .- CA"'B]
u@© ul) w@ - ul-1
v, = v(0) VEI) v(I:—2)

w0) - wvi-p-1)

u(i)
)= s i=0,1,...,01-1
v(i) [y(i)] i

Here A = A+GC, B=[B+GD -GJ, in which A, B, C, D are system matrices, and G is
the forward observer gain matrix. See function okid for more discussion on the definition
of these matrices. The solution is stored in Yf of dimension mx[(r+m)p+r] If the
experiment started from rest ic2(] )=0, otherwise, ic2(1)=1. Once an estimate of the
parameters is available the user is given the option to compute the prediction error

e, =y ~YV,
This computation when analyzing long records is time consuming. The square root of the
diagonal elements of the inverse correlation matrix are proportional to the parameter
variance. A chart depicting these values is plotted along with the prediction error. To bypass
the prediction error option, set the second element of ic2 to one, i.e. ic2(2)=0.

Function arx_b solves the least squares problem of a backward observer as follows
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where

y, =[O y(1)---y( ~ p-2)]
Y, =[D+CB CAP-'[GD —é] CA’[AB+GD -G| - C([AB+GD -G

u(0) u(l) u(2) - u(l-p-2)
v(p) vip+1) v(p+2) - Wv(-2)
Vo=| : :
v(l) v(2) v3) - v(i-p-1)
u(i)
)= - i=0,1,...,1-1
v(i) {y(i):l i -1

Here, A= A" +GC, B=-A"'B, in which A, B, C, D are system matrices, and G is the
backward observer matrix. See function okid_b for more discussion on the definition of
these matrices. The solution is stored in Y of dimension mx[(r+m)p+r]. Once an
estimate of the parameters is available the user is given the option to compute the smoothing
error, instead of the prediction error as in the case for the forward observer.

eb=zb—},bvb

The square root of the diagonal elements of the inverse correlation matrix are proportional to
the parameter variance. A chart depicting these values is plotted along with the smoothing
error. To bypass the smoothing error option, set the the variable ic to one, i.e. ic/=0. Note
that icl is a scalar whereas ic2 is a vector with two elements.

Observation of the forward and backward formulations shown above immediately reals that
one may simultaneously compute forward and backward observer parameters. Both
matrices are very similar in the sense that their lower sides are identical. Function arx_fb
solves for backward and forward observer parameters simultaneously. All parameters used
above also apply to this function. :

Algorithm:

First, the correlation matrices are computed without actually constructing the individual
matrices. The parameter estimate is obtained by

Y =ywi(vw'y

where (*) refers to pseudo inverse. The pseudo inverse is computed using singular value
decomposition.

12



Example:

r=1;m=1;ic=[0 1];index=0;p=2;L.=100;

a=[0-0.16; 1 -1]; b=[0 11'; c=[0 1]; d=0; G=[0.16 1]’
u=rand(L.,m);

y=dlsim(a,b,c,d,u);

psize=r+p*(r+m);

[Y]=arx_bat(m,r,u,y,p,ic);

Compute Prediction Error (1=yes,0=no) =: 1

Square Fitting Error Normalized

1.9097e-29
L‘g 2 x10:14 . i '
'd -
E o — -
:
Z _2 s It L x N 5 1 1
1 2 3 4 5 6 -7 8 9 10
Time Steps

15
% 10}
> Or .

o' ; 1 R . .

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5

Parameter Number

Y = [0.0000 1.0000 -1.0000 0.0000 -0.1600)]
See also:

okid, okid_b, okid_fb
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arxc
Purpose:

Compute combined observer/controller Markov parameters.
Synopsis:

[Ybar)=arxc(y,ufb,ue,p, truncate)
Description:

This function computes combined observer/controller Markov parameters Ybar from
feedback control input ufb, additive input excitation ue, and closed-loop response y.

Consider a linear discrete system of the form

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

which is operating in closed-loop. The input to the system, u(k), consists of the
feedback signal up (k) provided by an existing state feedback controller with gain F,
and an additive excitation input signal u.(k)

u(k) = ug (k) +u,(k)
= —Fi(k) +u, (k)

The estimated state x(k) is provided by an existing observer of the form

Z(k +1) = AZ(k) + Bu(k) — G[y(k) - (k)]
y(k) = Cx(k)+ Du(k)
_ The output y(k) is the system closed-loop response due to an excitation u(k). The

function arxc solves for the observer/controller Markov parameters in Ybar which
consists of

D C k-1
o and | (A+GC)YT[B+GD -G], k=1 2 ... p

where A, B, C, D, and F are of the closed-loop system in operation, and G is another
observer gain for the system such that

C
[_F](A+GC)“[B+GD -G]=0, k=p+1, p+2, ..

where p is a number specified by the user. The number truncate specifies the number
of data points to be deleted prior to application of the algorithm. This value is equal to
the number of time steps that is expected for the existing observer to converge.

14



Example:
An example data file is contained in the file xsamp712.
load xsamp712
ue(1:600)=[1;y(1:600)=[1;u(1:600)=(};
[Ybar]=arxc(y,-u,ue,20,300)
Ybar =
Columns 1 through 7

-0.0932 0.2513 0.8236 -0.0771 0.3786 -0.0357 -0.5592
0.1228 -0.0551 -0.7010 0.0188 -0.1409 0.0264 -0.0888

Columns 8 through 14

0.0686 0.0149 -0.2200 02012 0.1215 -0.0940 -0.1043
0.0247 -0.1287 0.0462 -0.0793 -0.0044 0.0364 -0.0138

Columns 15 through 21

-0.2484 0.0971 0.0189 -0.0101 0.0701 -0.1114 -0.0672
0.0932 -0.0401 0.0931 -0.0382 0.0814 -0.0203 0.0687_

Columns 22 through 28

0.1137 -0.0833 -0.0444 -0.0189 0.0115 -0.0695 -0.0910
-0.0387 0.0449 -0.0070 0.0210 -0.0074 0.0147 0.0149

Columns 29 through 35

0.0894 0.1423 -0.0596 -0.0859 -0.0226 0.0041 -0.0683
-0.0062 -0.0320 -0.0272 -0.0006 -0.0963 0.0263 -0.0956

Columns 36 through 41

0.0041 0.0171 -0.0598 0.0512 0.0595 -0.0819
0.0579 -0.0791 0.0609 -0.0676 0.0661 -0.0833

Algorithm:
The observer/controller Markov parameters are computed from feedback control input,
additive excitation input, and closed-loop response data. These parameters are used in
the function ocid to compute a realization of the system state space matrices, the existing
controller gain, and an observer gain.

See also:

ocid, mar_yoc, mar_oc, ryucovar, y_closed, separate ’
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arx_ps
Purpose:

Compute observer Markov parameters from pulse response histories.
Synopsis:
[d,ys,yol=arx_ps(y,m,p,ic)
Description: , , o

The function computes observer Markov parameters from pulse response time histories. The
identified observer system is deadbeat of order p. Given ! samples, r inputs, and m outputs,
y is I x mr .The least squares problem solves the following equations

y=Yv

. where

y=n % =y} y=kO y® - y@-dli=1..r.
y=[¥, V,}¥,=ID C(B+GD) CA(B+GD) -- CA*'(B+GD)]

Y,=[-CG -CAG --- -CA*'G],
V.
V=1V, V, - Vr’ Vi= ”];
v, v - V] [V
w0) w(@® w@2 - wd-1
v u,.(O) u‘(l) u,.(l—2) 0 )’i(O) )’,-(1) y,-(l—2)
i . :

Vo = ¥(0) - y(-3)

(©0) - u-p-1)

u,(0)=|1(ithelement) [, u(k)=0;k=1,....,[ -1

e O o

The solution is stored in [d, ys, yd] where d is the system transmission matrix D,

ys=[C(B+GD) CA(B+GD) - CA”'(B+GD)|
and
yo=[-CG —-CAG - -CA’'G]
The matrix ys has dimension m X rp and yo has dimension m X mp.

Algorithm:

First, the correlation matrices are computed without actually constructing the individual
matrices. The parameter estimate is obtained by

16



Y = ZVT(WT)*
where (*) refers to pseudo inverse. The square matrix VV has the following special form

a

mpx(p+1)r Bmp)(up i=1

W = L priyripeny O tymp i _\ v.vT
- » ﬁmp)(mp _2 2782

0 (O - %©@©] [n® - y®] - -1 - y@@-1)]

[0 - O] - [np-2) - »(@-2)]

ampx(p+l)r =

[3©0) - ¥,0)]

which make the pseudo inverse (VVT)* easier as shown below

VYT = I+od"B-aa"Ya -o'(B-aa’)
-(B-aa") a (B-oaa’y

The pseudo inverse (8 — aa’)* is computed using singular value decomposition. Once an

estimate of the parameters is available the user is given the option to compute the prediction

error

e=y-YV
This computation when analyzing long records is time consuming. The square root of the
diagonal elements of the inverse correlation matrix are proportional to the parameter
variance. A chart depicting these values is plotted along with the prediction error. To bypass
the prediction error option, set ic=0.

Example:

This example is to identify observer Markov parameters from the pulse response samples of
a three-mass-spring-dashpot system with two inputs and one output.

k1=1.0;k2=2.0:k3=3.0;m1=1.0;m2=1.0;m3=1.0;ratio=2*0.005;
K=[k1+k2 -k2 O;-k2 k2+k3-k3;0 -k3 k3];
Khalf=sqrim(K);Damp=ratio*Khalf;,
Ac=[zeros(3,3) eye(3,3);-K -Damp];Bc=[zeros(3,2);1 0; 0 1; 0 0];C=[zeros(1,5) 1];
dt=1.0;pt=100;p=10;[m,n]=size(C);[n,r]=size(Bc);D=zeros(m,r);
t=[dt:dt:pt*dt]’;
[A,Bl=c2d(Ac,Bc,dt); y=[];
fori=lr;
y=[y dimpulse(A,B,C,D,i,pt)];
end;
[d,ys,yol=arx_ps(y,m,p,0)
H=mar_sep(ys,yo,d,m,r,10)

See also:

mar_sep, okid_p, arx_bat, arx_;ps
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bk_diag

Purpose:
Transform the complex modal form of a discrete model into a real block diagonal form.
Synopsis: S [ — |
[Ab,Bb,Cb]=bk_diag(Lambda,B,_C ) B
Description:

Given a corrnplexr diégonal model

x(k +1) = Ax(k) + Bu(k);
y(k) = Cx(k) + Du(k)

where
A= d‘ag(z'l sssss A’p a,,t jﬂu-] s Ogqp — jﬁ:-ﬂ """ a,+ jﬁu' @, - jﬂu)
BT
b,
a:+ + .l (R4 . ; . .
B= aﬁ.i “'jg.n-: 1 C =[Cl o VCJ Ner Y1 Mo — Tl o Na + JH, 77..‘1#.]
a,+jB,
| au—jﬂn ] h
which is a complex model, the function bk_diag transforms this model to the following
block-diagonal form
x,(k +1) = A x, (k) + Bu(k),
y(k) = C,x, (k) + Du(k)
where
A, -
A,
Al, = aﬁ-l ﬁ:«ﬂ
ﬁ.ﬂl a.r+1
o, B,
! -B. @]

18



Bb — s+1 . Cb =[C| . Cs 1"‘.%‘l

”.wl

N i,

All the variables in this block-diagonal form are real rather than complex as in the diagonal
form. This function is used in conjunction with function modal to reduce an identified
model (stable or unstable) to a stable real block diagonal model for numerical simulations to

compare with real data.

Example:

rand('normal’);

n=7,

am=rand(n,n);bm=rand(n,2);cm=rand(1,n);

[v,Jambda]=eig(am);

lambda=diag(lambda);

bm=v\bm; cm=cm*v;

[lambda,k ]=sort(lambda);

bm=bm(k,:);cm=cm(:,k);

[a,b,c]=bk_diag(lambda,bm,cm)

a:
1.0188 0 0 0 0 0 0
0 -0.6935 -1.1752 0O 0 0 0
0 1.1752 -0.6935 O 0 0 0
0 0 0 0.4642 -1.8936 0 0
0 0 0 1.8936 04642 O 0
0 0 0 0 0 1.9055 -0.8629
0 0 0 0 0 0.8629 1.9055
-3.5006 -0.9259

-0.2835 1.3741

1.6978 2.7562

3.8881 0.6494

-1.5251 -2.3995

-3.3324 -0.0417

2.1830 0.0425

C=

-0.0730 -0.0421 -0.2797 -0.2737 0.3682 -1.0026 -0.4538

See also:

okid_b, okid_fb, modal
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Purpose:

Compute the matrix block transposition.
Synopsis:
[at]=block_tr(nrow,nblock,ncol,a flag)

Description:

block_tr

The function performs a 2-way block transposition depending on the input matrix. When

flag is set to 1 the wide matrix

- Ca=[y n o Vel
is block transposed to
Yo
B4
ar=| ",
ynblock

where each block yj is a matrix of dimension nrow x ncol. The reverse operation is obtained

when inputing a tall matrix and flag = 0.

Example:
y0=[01;23];
y1=[45;67];
a=[y0 yl1]
0 I 4 5
2 3 6 7
[at]=block_tr(2,2,2,a,1)
0 1
2 3
4 5
6 7
a=block_tr(2,2,2,at,0)
a=
0 1 4 5
2 3 6 7

See also:

mar_com
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Purpose:

Compute pulse response samples using FFT.

Synopsis:
[ys]=cpulse(y,u,r,m);

Description:

The function cpulse calculates the unit pulse response samples (Markov parameters) from
input and output time histories by using a frequency domain approach. The input time
histories are required to be sufficiently rich (e.g. random inputs). The system input and
output histories u(t) and y(t) must be stored as follows

[ u1(0) u, (0) u;(0) U, (0)
u (1) U (1) (1) u(1)
u=| u;(2) U, (2) U5 (2) U, (2)
| Uy (-1 T oUp (-1 - uls(l -1) urs(l - 1)_
[ y1(0) Ymi1(0) »5(0) Yms (0) 1
m® Ym1 (D) »ns( Yms(D
y=| m@ = Y Yis(2) Yms(2)
|y -1) Y= 1) ysU=1) Yms(=1) ]

where r is the number of inputs and m is the number of outputs, and u; (t)(yij(t)) is the i-th
input (output) of the j-th test at discrete time 7. The number of experiments s should be

greater or equal to 7, integer /is required to be even. The ouput of this function is the pulse
response histories ys.

Example:

The example is to compute the pulse response samples from 5 data sets of random inputs for
a single-input and single-output second-order system with sampling interval dt=0.2, pt=512
samples, natural frequency @, =1 and damping factor { =0.1,

a=[0 1;-1-0.2};b=(0; 1};c=[1 0];d=0;
pt=5 12;dt=0.2;rand('normal');
t=[dt:dt:pt*dt]’;

u=rand(pt,5);

for i=1:5,
yt(:,i)=lsim(a,b,c,d,u(:,i),t);end
[y1]=cpulse(yt,u,1,1);
plot(y1),title('Pulse response’)
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Algorithm:
The function cpulse uses a frequency domain approach to compute the pulse response
samples (Markov parameters) from output time histories generated from rich input signals.
First the FFT is applied to calculate the discrete frequency response functions of input u(t)
and output y(z). Then the input and output frequency response functions. are used to

compute the discrete transfer functions G(z), and the pulse response samples are the inverse
FFT of G(z). L

Y(2)=G(2)U(z),  Y()=FFT-1(G(z))
See also:

pulse
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era,eradc
Purpose:

Identify a state-space model from pulse response samples (Markov parameters).
Synopsis:

[a,b,c,d,sg,eg.mh]=era(y,m,r,n,nm,dr);
[a,b,c,d,sg,eg,mh]l=eradc(y,m,r,n,nm,dt);

Description:

The function era identifies a state-space model of a multi-input and multi-output linear, time-
invariant system from pulse response samples (Markov parameters). The pulse response
samples are stored as

0 oy @ e oy, (0) ey, (0)
SYTLC) JRRNETCINNS Y ¢ ) BNPTTINN W0 ¢ § EETCRN YA ¢ §

md=D = yud=-0 - -1 - y, (-1

where y,(¢) is the i-th output at discrete time ¢ due to a unit pulse at the j-th input. The
system to be identified has r inputs and m outputs. The identified model order is chosen as
n. When n is set to zero, user's inputs is required on-line to specify the desired order of an
identified model, based on the singular values of a Hankel matrix. Scalar nm specifies the
number of sample shifts for forming the rows of a Hankel matrix (see the Algorithm section
for definition). Integer nm x m should be greater than the model order n. Scalar dt specifies
the data sampling interval. [A,B,C,D,sg,eg ,mhl=era(y,m,r,n,nm,dt) returns an n-th order
linear, time-invariant identified discrete model:

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)

Matrix eg contains modal parameters of the identified model with damping ratios (%) in the
first column and frequencies (Hz) in the second column. The third column of eg gives the
eigenvalues of the corresponding continuous-time model. Note that the identified discrete
model can be easily transformed to a continuous-time model. Vector sg, whose elements are
singular values of the Hankel matrix, can be used as reference to choose the model order n.
The first column of matrix mh gives the normalized singular contribution of each identified
mode in matrix eg to the pulse response samples whereas the second column gives the
modal amplitude coherence. The maximum singular value is chosen to normalize the first
column of matrix mh. These normalized singular values are used to weight the importance
of the individual mode to the pulse response samples. Each element in the second column
of mh; (the i-th element of mh) is between 0 and 1; mh, — 1 indicates that the identified
mode eg; (the i-th eigenvalue) is reliable.

The function eradc is similar to era, but it uses the ERA data correlation method [Juang88]

to identify the system model. For a long data lenght, eradc is recommended for use because
it takes less memory and computational time to solve for singular values of the Hankel
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matrix. In eradc, the size of the data correlation matrix has been minimized to save time in
computing its singular values.

Examples:

Example 1:

i) Calculate pulse response samplcs of a smgle mput and smgle output second order
system with sampling interval dt=0.2, natural frequency @, =1, and damping factor

=0.1.

ii) Use era interactively to identify a model from the pulse response samples from (i) and
transform the identified discrete model to a continuous-time model.

iii) Plot the error between the pulse response samples from (i)' and the pulse response
samples of the identified model.

iv) Display eigenvalue matrix eg, singular value vector sg and modal amplitude coherence

matrix mh.

a=[0 1;-1 -0.2]; b=[0;1];c=[1 0];d=0;
pt=100;dt=0.2;t=[dt:dt:pt*dt]";
u=zeros(pt,1);u(1,1)=1.0;
y=lsim(a,b,c,d,u,t);
clg
[al,bl,cl,dl,sg,eg,mh]=era(y,1,1,0,20,dt);
yl=dlsim(al,bl,cl,dl,u);
error=y-yl;
clg
plot(error),title('Pulse response error’)
pause
eg,mh,sg(1:10)

Example 2:

i) Calculate pulse response samples from 6 data sets for a single-input and single-output
second order system with sampling interval dt=0.4, /=512 samples, natural frequency
o, =1, damping factor { = 0.1, and noise standard deviation 0.04.

ii) Use eradc interactively to identify a model from the pulse response samples from (i)
and transform the identified discrete model to a continuous-time model.

i) stplay eigenvalue matrix eg, singular value vector sg, and modal amphtudc coherence
matrix mh of the eradc identified model.

iv) Plot the pulse response samples of the original model and the eradc-identified model.
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Algorithm:

The function era uses the Eigensystem Realization Algorithm (ERA) from [Juang85], which

a=[0 1;-1 -0.2]; b=[0;1];c=[1 0};d=0;
dt=0.4;pt=512;t=[dt:dt:pt*dt]";
rand('normal’);

u=rand(pt,6);

for i=1:6,
yt(:,i)=Isim(a,b,c,d,u(:,i),t);end
y=yt+0.04*rand(pt,6);
yi=cpulse(y,u,1,1);

clg
[al,bl,cl,d1,sg,eg,mh]=eradc(yi,1,1,0,50,dt);
eg,mh,sg(1:10)

clearu

u=zeros(pt,1);u(1,1)=1.0;
yl=dlsim(al,bl,cl,d1,u);
y0=Isim(a,b,c,d,u,t);

yl=ly0 yil;

c

g
plot(y),title('Pulse response’)
pause

uses Markov parameters (pulse responses) to form the Hankel matrix

where Y, is the i-th Markov parameter and y; is the i-th output at discrete time ¢ due to a unit
pulse at the j-th input. From the measurement Hankel matrix, ERA uses the SVD of H(0),

Y Yia o Yg
HG-n=| Tt
Yiey Yieyn = Yiegap

@ o on D

Y. =

i

yn@) -y, ()

Y () = Y ()

H(0)=U X VT, toidentify a k-th order discrete state-space model as

where matrix X, is the upper left hand k x k partition of X containing the k largest singular
values along the diagonal. Matrices U, and V, are obtained from U and V by retaining only
the k columns of singular vectors associated with the k singular values. Matrix E,, is a

A, = 532 UTHAYY, 572
B =Z\"V/E,

Ce = EqU )*

D, =Y(0)
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matrix of appropriate dimension having m columns, all zero except that the top m xm
partition is an identity matrix. Ey is defined analogously.

The function eradc uses a special case of the ERA/DC aléomhm from [Juang88]. It starts
with the Hankel matrices H(0) and H(1) to generate the block correlation matrices
R(@i) = H()H(0)". The SVD of R(O)=U ZV’, is applied to identify a kth order model as

A= 221/2 UZ ROV, 2;1/2
B, = TV2VTH(0)E,

Ci = EpUi Z)?

D, =Y(0)

The function eradc uses the block correlation matrices R(i) = H(i)" H(0) if this matrix is
smaller than R(i) = H({i)H(0)".

Limitations:

The most time consuming step in each algorithm is the singular value decomposition. The
number of floating point operations for SVD are roughly a cubic function of the matrix
dimension. Also the SVD of a large matrix needs a lot of memory. The size of the SVD
matrix in era and eradc is (nmmxm)x({—nm—1xr) and (nmxm)x(nmxm) [or
(£~ nm)x (£ — nm) if this is smaller] respectively where £ is the length of the data. In era,
the column number of the Hankel matrix may be very large if the data length is large.
However, the column number in eradc can be chosen as large as desired, because the size of
the data correlation matrix depends only on the number of rows.

See also:
cpulse, okid, okid_b, okid_fb
References:

[1] Juang, J. N. and Pappa, R. S., "An Eigensystem Realization Algorithm for Modal
Parameter Identification and Model Reduction,” Journal of Guidance, Control, and
Dynamics, Vol. 8, No. 5, 1985, pp. 620-627.

[2] Juang, J. N., Cooper, J. E., and Wright J. R., "An Eigensystem Realization Algorithm
Using Data Correlation (ERA/DC) for Modal Parameter Identification,” Control Theory and
Advanced Technology, Vol. 4, No. 1, pp. 5-14, 1988.

[3] Lew, J. S., Juang, J. N. and Longman, R. W., "Comparison of Several System
Identification Methods for Flexible Structures,” Proceedings of the 32nd Structures,
Structural Dynamics, and Materials Conference, Baltimore, MD, April 1991, pp. 2304-
2318.

[4] Juang, J. N., "Mathematical Correlation of Modal Parameter Identification Methods Via

System Realization Theory," International Journal of Analytical and Experimental Modal
Analysis, Vol. 2, No. 1, Jan. 1987, pp.1-18.
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freq_pt

Purpose:

Plot the transfer function representation of a discrete time system.
Synopsis:

[mag phasel=freq_pt(a,b,c,d,p,dt,iu)
Description:

Given a discrete model

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

the function computes the transfer function representation given by
G(e™My=C(e"™1-A)"'B+D

The parameter p determines the number of spectral lines plotted, dt is the sample time, iu is
the input number to be plotted. The function [mag,phase]=freq_pt(A,B,C,D,p,ds,iu)
returns the magnitude (mag) and phase plots of the transfer functions for the iu-th input.
The function prints the value for the Nyquist frequency. The user is prompted for lowest
frequency to plot, and for the upper frequency bound. The upper frequency bound must be
given in terms of percentage of the Nyquist frequency. These values are used to define the
frequency range. The actual plot scale may be slightly different because it is determined by
the plotting function.

Example:

a=[0 1;-100 -0.002}; b=[0;1];c=[1 0];d=0;
dt=0.04;pt=1024;t=[dt:dt: pt*dt]";
rand('normal’);

u=rand(pt,1);

y=Isim(a,b,c,d,u,t);
y=y+0.0042*rand(pt,1); %3 percent noise
la,b,c,d,m]=0kid(1,1,dt,u,y,'batch’,10),
[mag,phase]=freq_pt(a,b,c,d,300,dt,1);

Nyquist frequency (Hz) is =: 12.5

Enter lower frequency to plot (Hz)=: 0.1
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Response due to input= 1 output= 1
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s
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See also:
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hankl
Purpose:

Form a Hankel matrix from a sequence of Markov parameters.
Synopsis:
[D,H]=hankl(Markov,p)
Description:
Given a discrete model

x(k +1) = Ax(k)+ Bu(k)
y(k) = Cx(k) + Du(k)

with r inputs and m outputs, the pulse response samples are typically stored as
L=[n % % = vl
where y,= response samples due to a unit pulse at the i-th input. Each y, has m columns

and £ rows where £ is the length of data. The pulse response samples can be rearranged
by using function p2m to the following sequence of system Markov parameters

sz[yo h n - Ye—z]
=[p CB CAB .- CA"’B|

Function [D,H]=hankl(Ys,p) return the transmission matrix D and a Hankel matrix defined

as
AR AR
HO=| 2 . %
Yp Yp+1 Yl—2

Note that all the data pass into the function are used to form the Hankel matrix. The inner
products are used in matrix multiplication to reduce computational time. The size of the
matrix is p x(£~— p—1). The longer the data length is, the larger the number of rows of the
matrix becomes. This function is used in era for identification of system matrices.

See also:

era, eradc, m2p
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hankldc

Purpose:

Form a data correlation matrix from a sequence of Markov parameters.

Synopsis:

[D,R]=hankl(Markov,p)

Description:

Given a discrete model
x(k +1)= Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)
with r inputs and m outputs, the pulse response samples are typically stored as
L= % »n = vl
where y,= response samples due to a unit pulse at the i-th input. Each y, has m columns

and £ rows where £ is the length of data. The pulse response samples can be rearranged
by using function p2m to the following sequence of system Markov parameters

L=[ % b - Y]
[D cB CAB .- CA*’B|

From this sequence of Markov parameters, define two Hankel matrix as

Ty, Y, Y, ]
Yl y2 tp2 1 2 {-p-2
Y Y YZ YS -~p-1
2 3 {-p-1 . . .
HO = : : y H— . . . . y
’ ) ’ ) Y Y. - ¥
Y y* Y, P p+l -3
roe 3 | YV Vo o Yy |

Function [D,R]=hankldc(Ys,p) returns the transmission matrix D and a data correlation

matrix R defined as
R= HHOT

Note that all the data pass into the function are used to form the data correlation matrix. The
size of this matrix is (p+1)x p which is independent of the length of the data. This
function is used in eradc for identification of system matrices.

See also:

era, eradc, m2p
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k_abcd

Purpose:

Identify an Observer/Kalman filter gain matrix from test data for a discrete model to whiten
the stochastic residual.

Synopsis:
[G, Gmarl=k_abcd(A,B,C.D,u,y,p)
Description:

The function k_abcd solves for an observer/Kalman filter gain matrix of a system in the
form

X(k +1) = AR(k) + Bu(k) — G y(k)— y(k)]
y(k) = Cx(k)+ Du(k)

where x(k) is the estimate of the state x(k) and y(k) is the estimate of y(k). The system has
m outputs, r-inputs, and time samples dt apart. The input/output time histories are stored as
column matrices. Initially an estimate of the desired observer Markov parameter number p
must be given for whitening the residuals. It is suggested that p is chosen such that the
product p X m is greater than or equal to the order of the system. The identified matrix, G,
and observer gain Markov parameters, Gmar (stored as a column matrix), are returned to the
main program. See references for detailed information. To identify a stable observer which
whitens the residual between the real output y(k) and the estimated output y(k), the system
matrices A, B, C, D, must be reasonably close to the true ones.

Example:

From the test data of a truss structure, use the function to compute a set of system matrices
and an observer gain matrix. The order of the system is determined automatically by the
function eradc. The residual is further whitened by using the function k_abcd to modify the
observer gain matrix. The function y_esti is used to compute the estimated outputs which
are then subtracted from the real output to obtain the residual. The following is output taken
from a typical run.

load sample

[pt.i]=size(u);

[a,b,c,d,m]=0kid(n,r,dt,u,y, batch’,20);

[time,y_e]=y_esti(a,b,c,d,m,u,y,dt,pt);

[m1,Cake]=k_abcd(a,b,c,d,u,y,20);

[time,y_el]=y_esti(a,b,c,d,m1,u,y,dt,pt);

clearabcdu

res=y-y_e;

[yvt, vvt]=yycovar(n,2,pt,res,1);

clear res

vvt

vvt =

2.1068e+02 -2.5208e+01 1.3304e+02 7.4350e+00
-2.5208e+01 1.6014e+02 1.6889¢+01 7.4626e+01
1.3304e+02 1.6889¢+01 2.1061e+02 -2.5116e+01
7.4350e+00 7.4626e+01 -2.5116e+01 1.6015¢+02
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resl=y-y_el;

[yvt, vvtl]=yycovar(resl,2,1);
clear resl

vvtl

vvtl=

1.2454e+02 -4.8890e+01 -1.9179¢+00 -2.9991e+00
-4.8890e+01 1.3218e+02 2.6610e-01 -1.4728e+01
-1.9179¢+00 2.6610e-01 1.2469¢+02 -4.8836¢+01
-2.9991e+00 -1.4728e+01 -4.8836e+01 1.3220e+02

The matrix
res, (1)
res, (1)
wit=E| res. (2) res,(1) res,(1) res,(2) res,(2)]
res,(2)

is the expected value of the auto- and cross-correlation of the residual obtained from the
okid identified observer, whereas

resl (1)
resl, (1)
wil = resl.(2) resl,(1) resl,(1) resl,(2) resl,(2)]

resl,(2)

is obtained from the k_abcd identified observer gain using the okid identified system matrices.

It is obvious that the residual res/ is whiter than res.

Algorithm:

The algorithm used here is similar to that for the okid which identifies a set of system
matrices, A, B, C, D, as well as an observer gain matrix, G. For given system matrices A,
B, C, D, the deterministic component of the output can be subtracted out. The observer
gain is obtained by whitening the remaining residual. For details see references.

§ee also:
okid, okid_b, okid_fb, yycovar

References:

[1] Chen, C. W., Huang, J.-K., and Juang, J.-N., "Identification of Linear Stochastic Systems
Through Projection Filters," presented at the AIAA 33rd Structures, Structural Dynamics &
Materials Conference, 1992, Paper No. AIAA-92-2520.

[2] Juang, J.-N., Chen, C. W., and Phan, M., "Estimation of Kalman Filter Gain from Output
Residuals" NASA Technical Memorandum TM-107603, Langley Research Center,
Hampton, VA, March 1992.
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m2p

Purpose:

Rearrange a Markov parameters sequence in the form of pulse response time histories.

Synopsis:

Yp=m2p(¥,r)

Description:

Given a discrete model
x(k+1)= Ax(k)+ Bu(k)

y(k) = Cx(k)+ Du(k)

with r inputs and m outputs, the sequence of system Markov parameters is defined as

Y,=[D CB CAB - CA“’B|
The pulse response samples are typically stored as

Yp=[y1 Yo Y2 yr]

where y,= response samples due to a unit pulse at the i-th input. Each y, has m columns
and £ rows where £ is the length of data. The sequences Y and Y, are equivalent in the
sense that both represent pulse response samples. The function converts Y to Yp. Note
that Y, is the sequence used in the eradc and era functions.

If the combined system/observer Markov parameters (see function mar_com) are used, the
input matrix B becomes [B G] and the sequence Y becomes

Y,=[D c[B G] CA[B G] - CA”’[B G]|

where the input number changes from r to r+m. The pulse response samples in Yp
becomes

Y,=[% % ¥ o Y Y Yoz 7 Veew)

with m additional £ x m matrices due to the observer gain matrix G which is treated as an
input matrix. The first » matrices represnt the system pulse response samples and the last
m matrices mean the observer gain pulse response samples.

See also:

mar_com, okid, okid_b, okid_fb, p2m
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mar_com, mar_sep
Purpose:

Recover the system Markov parameters from a set of observer Markov parameters.
Synopsis:

H=mar_com(ybar,r,n_markov)
H=mar_sep(y0b,y1b,D,r,n_markov)

Description:
Given an observer of the form
- _ u(k)
k+D)=Ax(k)+|B -G
x(k+1) = Ax(k)+[ ]{y(k)}
y(k) = Cx(k)+ Du(k)

with r inputs and m outputs, the sequence of observer Markov parameters previously
computed is passed to the function mar_com with

[p c{B -G} cA{B -G} -- CA*{E -G}
or to the function mar_sep with

)’0b=[C-B. CZE CZZE Czﬂ_mrkov-lﬁl
and

ylb=[CG CAG CA’G - CA™™"G]
There is usually a small number, p, of nonzero observer parameters which is less than
n_markov._The observer matrices are related to the system matrices by
A=A+GC,B=B+GD, and D is the direct transmission term which is the same for

system and observer. The function computes recursively n_markov parameters of the
original system and puts them in the form

H=[{D 0} c{B -G} cA{B -G} - cA*{B -G}
Algorithm:

The parameters are computed using the following recursive formula
k-1 , . _
CA'[B -G]=CA'B-Y CA'GCA**"'[B -G]-CA'G[D 0]
i=0

for k=1,2,...n_markov
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Example:

See also:

a=[0 -0.16; 1 -1]; b=[0 1]’;
=[0 1}; d=0; G=[0.16 1]}
abar=a+G*c;
bbar=[b+G*d -G};
ybar=[d c*bbar c*abar*bbar];
[H]=mar_com(ybar,1,2)
bg=([b -GJ;
Hs={d 0 c*bg c*a*bg]

H=
0 0 1.0000 -1.0000 -1.0000 0.8400

Hs =
0 0 1.0000 -1.0000 -1.0000 0.8400

okid, okid_b, okid_fb, okid_p
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mar_oc
Purpose:

Compute a specified number of the system, observer, and controller Markov parameters
from observer/controller Markov parameters.

Synopsis:
[H)=mar_oc(Ybar,r,m,Ntotal)
Description:

From a sequence of observer/controller Markov parameters arranged in Ybar in the
following order

D C . |
o b and | (4+GC)[B+GD -G, k=12, p

the function computes the following sequence of system, observer, and controller Markov
parameters

(L[5 - [Sho o S

that are arranged in the matrix A in this order. The scalar r denotes the number of inputs,
and m the number of outputs. Ntotal specifies the number of Markov parameters in H to
be returned to the user. For background information, the sequence of observer/controller
Markov parameters are computed from closed-loop excitation data, and the function mar_oc
is then used to unscramble this sequence to obtain the system, observer, and controller
Markov parameters.

Example:
load xsamp712
ue(1:600)=(];y(1:600)={1;u(1:600)=[];
[Ybar]=arxc(y,-u,ue,30,300);
[H]=mar_oc(Ybar,1,1,30)
H=
Columns 1 through 7

-0.0689 0.1778 0.8012 0.0572 1.0144 0.1181 0.5774
0.0351 0.0422 -0.6740 -0.1063 -0.6234 -0.0419 -0.8527

Columns 8 through 14

0.0915 04184 -0.1442 0.2114 0.0086 0.0914 -0.1890
-0.1076 -0.6742 -0.0692 -0.6106 0.0527 -0.3847 -0.0236
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Columns 15 through 21

-0.1854 -0.0041 -0.3831 -0.1030 -0.5743 -0.1404 -0.6633
-0.1319 0.1225 0.2654 0.0310 05776 0.1159 0.8443

Columns 22 through 28

-0.0318 -0.7223 -0.0736 -0.7292 0.0206 -0.7679 -0.1022
0.1240 09964 0.0591 1.0904 0.0730 1.1074 0.0075

Columns 29 through 35

-0.5967 . 0.0881 -0.4962 -0.0521 -0.2350 0.0872 -0.1258
1.0717 0.0602 0.8314 -0.0597 05758 0.0144 0.2073

Columns 36 through 42

0.0442 0.0852 0.0671 0.2845 0.1206 0.5419 0.0896
-0.1010 -0.0944 -0.0799 -0.4433 -0.1145 -0.7440 -0.1510

Columns 43 through 49

0.7482 0.1712 0.8393 0.0375 0.9105 0.0575 0.8713
-1.0425 -0.1319 -1.2376 -0.1653 -1.2999 -0.0688 -1.2899

Columns 50 through 56

0.0530 0.8104 0.0221 0.6379 0.0741 0.3764 -0.0248
-0.0444 -1.1347 -0.0149 -0.8797 0.0075 -0.5058 -0.0365

Columns 57 through 61

0.1169 -0.0111 -0.1443 -0.1061 -0.3409
-0.0961 0.0786 0.3044 0.0666 0.7439

Algorithm:

The system, observer, and controller Markov parameters are computed from the
observer/controller Markov parameters by a set of recursive equations. If more than p
number of system, observer, and controller Markov parameters are required to be solved,
the extra observer/controller Markov parameters are set to zero. For further details, see
references. o

See also:
arxc, mar_yoc, ocid, ryucovar, separate
Reference:
[1] Juang, J. N. and Phan, M., "Identification of System, Observer, and Controller from

Closed-Loop Experimental Data,” Presented at the AIAA Guidance, Navigation, and
Control Conference, Hilton Head, South Carolina, Aug. 10-12, 1992.
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mar_yoc

Purpose:

Computc system, observer, and controller Markov parameters directly from feedback

control input ufb, additive 1nput excitation ue, and output response y
Synopsis:
[ocs]=mar_yoc(y,ufb,ue,p,truncate Ntotal)

Description:

The function mar_yoc solves for the Markov parameters

[3:’ li‘(;?]w -GJ, [_C};-:IA[B -GJ, ... [__C;,]A""’"'"'Y[B ~G]

from feedback control input ufb, additive input excitation ue, and output response y. The
data is stored as column matrices. For example, for a system with m outputs, the closed-
loop output data matrix y contains m columns and as many rows as the number of data
points available. The data matrix ufb contains the feedback control signal, ue contains the
additive excitation input signal. The number p denotes the number of observer/controller
Markov parameters to be solved. The number truncate specifies the number of data points
to be deleted prior to application of the algorithm. This value is equal to the number of time
steps that is expected for the existing observer to converge. Ntotal is the total number of
Markov parameters to be solved for from p identified observer/controller Markov

parameters. This is done by setting the extra observer/controller Markov parameters to be
zero.

C k-1
F A*'[B -G]=0, k=p+1, p+2,..
These Markov parameters are in the form ready to be used to obtain a state space realization of
the system matrices, observer gain, and controller gain.
Example:

An example data file is contained in the file xsamp712.

load xsamp712
[ocs]=mar_yoc(y,-u,ue,3,200,4)

ocs =
Columns 1 through 7

-0.0689 0.1778 0.8012 0.0572 1.0144 0.1181 0.5774
0.0351 0.0422 -0.6740 -0.1063 -0.6234 -0.0419 -0.8527
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Columns 8 through 14

0.0915 0.4184 -0.1442
-0.1076 -0.6742 -0.0692

Columns 15 through 21

-0.1854 -0.0041 -0.3831
-0.1319  0.1225 0.2654

Columns 22 through 28

-0.0318 -0.7223 -0.0736
0.1240 0.9964 0.0591

Columns 29 through 35

-0.5967 0.0881 -0.4962
1.0717 0.0602 0.8314

Columns 36 through 42

0.0442 0.0852 0.0671
-0.1010 -0.0944 -0.0799

Columns 43 through 49

0.7482 0.1712 0.8393
-1.0425 -0.1319 -1.2376

Columns 50 through 56

0.0530 0.8104 0.0221
-0.0444 -1.1347 -0.0149

Columns 57 through 61

0.1169 -0.0111 -0.1443
-0.0961 0.0786 0.3044

Algorithm:

The function first computes the observer/controller Markov parameters for the closed-loop
system. Then, from the identified observer/controller Markov parameters, the individual
system, observer, controller Markov parameters are computed and arranged in the specified
form which is ready to be used for realization. The function is a combination of the

functions arxc and mar_oc.

See also:

0.2114
-0.6106

-0.1030
0.0310

-0.7292
1.0904

-0.0521
-0.0597

0.2845
-0.4433

0.0375
-0.1653

0.6379
-0.8797

-0.1061
0.0666

arxc, mar_oc, ocid, ryucovar, separate

0.0086
0.0527

-0.5743
0.5776

0.0206
0.0730

-0.2350
0.5758

0.1206
-0.1145

09105
-1.2999

0.0741
0.0075

-0.3409
0.7439
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0.7679

-0.1890
-0.0236

0.0914
-0.3847

-0.1404 -0.6633
0.1159 0.8443

-0.1022
1.1074 0.0075

0.0872 -0.1258
0.0144 0.2073

0.5419 0.0896
-0.7440 -0.1510

0.0575 0.8713
-0.0688 -1.2899

-0.0248
-0.0365

0.3764
-0.5058



match
Purpose:

match system eigenvalues from identified forward and backward model and provide reduced
forward and backward model in modal coordinates.

Synopsis: R - R
(lamdaf,bmf,cmf,msv_f,lamdab,bmb,cmb,msv_b}=match(af,bf,cf,ab,bb,cb)
Description:
A typical forward state space model has the form

x(k+1)=(A+GC)x(k)+[B+GD —G]{

u(k)}
y(k)

y(k) = Cx(k)+ Du(k)

with m outputs, r inputs, and time samples dr apart. Here A, B, C, D are system matrices
and G is referred to as the forward observer gain. The stable modes of the forward model
are inside the unit circle, whereas the unstable modes are outside the unit circle.

On the other hand, a typical backward state space model has the form

u(k)
x(k) = (A" + GC)x(k +1) + [—A”‘B GD —G'] u(k +1)
y(k)

(k) = Cx(k) + Du(k) ,
The stable modes of the backward model are outside the unit circle, whereas the unstable
modes are inside the unit circle. All matrices are the same as those described above for the
forward model, but here G is referred to as the backward observer gain matrix.

The matrices 4, B, C, D, G, and G can be simultaneously identified by the function
okid_fb. For noise-free data, the A, B, C, D, identified either from the forward model or
from the backward model should have an identical input-output map, implying that the
identified system eigenvalues are identical. For noisy data, however, the system modes are
contaminated by the noises. In addition, there are many computational (spurious) modes in
the identified system matrices. As a result, the system matrices identified from both forward
and backward models are somewhat different because the system modes are contaminated
differently by noises. Note that the forward and backward models are identified by
minimizing different residuals due to system uncertainties and measurement noises.
Nevertheless, the system modes from both models should be reasonably close, whereas the
computational modes may be quite different. Therefore, matching is possible to distinguish
the system modes from the computational modes.

Given A, B, C identified for the forward model and A™', — A™'B, C identified for the
backward model, function match return with a reduced forward model and backward model
in modal coordinates. The input parameters af, bf, cf represent the forward model matrices
A, B, C, whereas ab, bb, cb represent A™', — A™'B, Crespectively. The output vectors,
lamdaf and lamdab, contain the matched system eigenvalues for the forward and backward
models respectively. The matrices bmf,cmf,bmb,cmb are the corresponding input and
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output matrices in modal coordinates, where the last character f means forward and b
backward. The output vectors msv_f and msv_b give the msv (modal singular value, see
function svpm) contribution to the pulse response samples for the forward and backward
modal parameters, respectively. In addition to the eigenvalue matching, the msv
contribution is also examined. Those modes which has higher msv contribution than the

- matched modes are also included in the reduced model. Therefore, both the reduced
forward and backward modal models may not be the same in size. In general, the reduced
forward modal model is larger in size for stable modes than the reduced backward modal
model. On the other hand, the reduced backward modal model may be larger in size for
unstable modes than the reduced forward modal model. See references for detailed
information. If the identified forward observer gain G and backward observer gain G are to
be counted in the computation of the msv contribution, the input parameters bf should be
replaced by [bf gf] and bb by [bb gb], where gf means G and gb means G.

Example:

From two-input and three-output data of a three-mass-spring-dashpot system with two
unstable modes and one stable mode, use okid and okid_b to identify a forward model and
backward model, and then match the identified eigenvalues. The input 4 and output y data
has 1 sec. sampling period, 250 data points and 10% noises.

[af,bf cf,df,gf]=0kid(3,2,1,u,y, batch_lq’,3);
[ab,bb,cb,db,gb]=0kid_b(3,2,1,u,y,'batch_lq',3);
ab=inv(ab);bb=-ab*bb;
[lamdaf,bmf,cmf,msv_f,lamdab,bmb,cmb,msv_b]=match(af,[bf gf],cf,ab,[bb gb].cb);
n_b=length(lamdab);n_f=length(lamdaf);
eif=deg2hz(lamdaf dt);
disp([eif(:,1:2) msv_f]);
-1.4607e-01 2.7570e-01 2.5322¢-01
-1.4607e-01 2.7570e-01 2.5322¢-01
-1.7733e-01 8.0889%¢-02 1.0000e+00
-1.7733¢-01 8.0889¢-02 1.0000e+00
5.5570e-01 4.4269¢-01 6.9444¢-02
5.5570e-01 4.4269¢-01 6.9444¢-02
lamdab=1.0 ./lamdab;bmb=-diag(lamdab)*bmb;
eib=deg2hz(lamdab,dt);
disp([eib(:,1:2) msv_b]);
-1.8321e-01 2.7569¢-01 2.2238e-01
-1.8321e-01 2.7569¢-01 2.2238e-01
-1.9672¢-01 8.0897e-02 1.0000e+00
-1.9672¢-01 8.0897e-02 1.0000e+00
3.4786e-01 4.4260e-01 1.2439¢-01
3.4786e-01 4.4260e-01 1.2439¢-01

See also:
okid, okid_b, okid_fb, svpm
References:
[1]1 Juang, J.-N. and Phan, M., “Identification of Backward Observer Markov Parameters:

Theory and Experiments,” NASA Technical Memorandum TM-107632, Langley Research
Center, Hampton, VA., May 1992.
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modal
Purpose:

Compute a reduced stable or unstable model in modal coordinates.
Synopsis: N ‘

[Lambda,Bm,cm] =modal(A,B,C flag)
Description:

Given the discrete model

x(k+1)= Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)

~ with r inputs and m outputs, the equivalent model in modal coordinates is

x (k+1)= Ax,, (k) + B u(k)
y = C,x(k)+ Du(k)

" where A is a diagonal matrix containing the eigenvalues, 4, (i =1,2,...,n), of the state
matrix A. Those eigenvalues with their length larger than 1 are known to be unstable
modes.

This function returns a complex vector, Lambda which contains only either stable modes
when flag is set larger or equal to zero or unstable modes otherwise. Corresponding, the
input matrix B is transformed to Bm and C to Cm. Note that the transmission matrix D is
coordinate independent. This function is used in okid_b and okid_fb to distinguish
identified unstable modes from stable modes for comparison with the identified results
from okid. It is used in conjunction with function bk_diag to reduce an identified system
model to a stable block diagonal form for numerical simulations to compare with real
data.

See also:

okid_b, okid_fb

42



monera
Purpose:

Estimate variance of the ERA identified parameters.
Synopsis:

[eg,egm,vp,vw,mh]=monera(y,m,r,n,nm,dt,ni,nos);
Description:

Monera uses the Monte Carlo approach to calculate the variance of the ERA identified
parameters contaminated by noise. The system pulse response samples y are stored as

oy e Y0 -y, (0) e 3, (0) ]
) Ym (1) (D Ymr (1)

y=[ m@ = Y@ o 2D Y (D)

=1 s Y d=1) - oy (=D e Y (-1)

where y,;(¢) is the i-th output at discrete time 7 to a unit pulse at the j-th input. The system to
be identified has r inputs and m outputs. The identified model order, n, is chosen by the
user. Scalar nm specifies the row number of the Hankel matrix as described in era. Integers
nmx m should be greater than the model order n. Scalar dt specifies the data sampling
interval. Scalar ni specifies the number of the Monte Carlo runs used to estimate the variance
of the ERA identified parameters. Scalar nos specifies the standard deviation of the white,
zero-mean and Gaussian measurement noise artificially added to the pulse response samples;
nos should be much smaller than the root mean squared value of the pulse response samples

in y.

leg,egm,vp,yw,mh)=monera(y,m,r,n,nm,dt,ni,nos) returns the eigenvalue vector eg and
the modal amplitude coherence vector mh of the ERA identified model from the pulse
response samples y. The elements of vector egm are the mean values of the ni set of ERA
identified eigenvalues from the pulse response samples with added noise (nos). Vector vp
(vw) is the variance of the ERA identified damping (frequency) corresponding to the
eigenvalue vector eg from ni set of Monte Carlo runs. The variable mh is the modal
amplitude coherence. '
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Example:

Calculate the variance of the ERA identified frequencies and dampings from the pulse
response samples of a single input, single output second order system with sampling
interval dr=0.2, natural frequency @, =1, damping factor { =0.1.

a=[0 1;-1 -0.2]; b=[0;1};c=[1 0];d=0;
pt=100;dt=0.2;t=[dt:dt:pt*dt]’;
u=zeros(pt,1);u(1,1)=1.0;
y=lIsim(a,b,c,d,u,t);

rand(‘'normal’)

y=y+0.04*rand(pt,1); L
leg,egm,vp,vw,r]=monera(y,1,1,4,20,dt,50,1.e-5);
eg.egm,r

clg

subplot(211)

bar(vw),title('Frequency variance')
bar(vp),title('Damping Variance')

Algorithm:

The function monera uses the Monte Carlo approach [Longman89,91] and data
correlation[Juang 88] to estimate the variance of the ERA identified frequencies and
dampings. Depending on the number of sensors and the length of data to be used for
system realization, monera automatically chooses either eradc or eradct to identify a system
model with computational efficiency.

See also:

eradc, peradc

References: -
[1] Longman, R. W., Bergman, M. and Juang, J. N., "Variance and Bias Confidence Criteria

for ERA Modal Parameter Identification," Proceedings of the 1988 AAS/AIAA
Astrodynamics Specialist Conference, Minneapolis, Minnesota, August 1988.

[2] Longman, R. W, Lew, J. S., Tseng, D. H. and Juang, J. N., "Variance and Bias
Computation for Improved Modal Identification Using ERA/DC," Proceedings of the 1991
American Control Conference, Boston, MA, June 1991.

[3] Juang, J. N, Cooper, J. E. and Wright J. R., "An Eigensystem Realization Algorithm

Using Data Correlation (ERA/DC) for Modal Parameter Identification,” Control Theory and
Advanced Technology, Vol. 4, No. 1, pp. 5-14, 1988.
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ocid
Purpose:

Identify system, observer and controller gain matrices from closed-loop test data.
Synopsis:

[a.b,c,d,g fl=ocid(y,ufb,ue,p,dt,truncate,description)

Description: 7
The function ocid solves for the observer/controller Markov parameters of the following
system
u,(k)+u,(k
x(k +1)=(A+GC)x(k)+[B+GD —G)[ n ;(k) o )]

oy | | C
[u,,, ( k)] = [_ F]x(k) + Du(k)

with sampling time intervals dt apart. The data is stored as column matrices. For example,
for a system with m outputs, the closed-loop output data matrix y contains m columns and
as many rows as the number of data points available. The data matrix ufb contains the
feedback control signal, ue contains the additive excitation input signal. The number p
denotes the number of observer/controller Markov parameters to be solved for. The
number truncate specifies the number of data points to be deleted prior to application of the
algorithm. This value is equal to the number of time steps that is expected for the existing
observer to converge. The description is a short descriptive tag for the current data set and
indicates the computation procedure to be used to compute the observer and controller gain.
If the description is set to be 'lq, it means that a, b, ¢, d are realized first, and then g and f
are computed by least-squares (Iq). Any other description indicates that a, b, ¢, d, g, and f
are to be realized simultaneously. The function will first return a plot of singular values for
the user to select the desired model order. Once this is done, the function will ask whether
or not the user wants to see plots that show the actual responses and reconstructed
responses. Finally, a set of realized system matrices, observer gain, and controller gain
will be returned.

In general, if p observer/controller Markov parameters are to be solved for, then the
maximum order of the system that can be recovered is pm, where m is the number of
outputs. The following rules apply with regard to the number of singular values computed.
If a flag value of zero is chosen, then the singular value plot will show (m-+r)i singular
values where i is the smallest integer such that (m+r)i is larger or equal to pm where r is
the number of inputs. If a flag value of one is chosen, then the singular value plot will
always show pm singular values. In either case, the user can always retain pm singular
values to obtain a realized system that has the maximum order for a chosen value of p.

The following information provides a better understanding of the OCID problem. Consider
a linear discrete system of the form
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x(k+1)= Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)

which is operating in closed-loop. The input to the system, u(k), consists of two
components

uck) = u,,,(]c) +u,(k)

where u,, (k) denotes the feedback signal provided by an existing linear state feedback

controller with gain F i
up (k) =—Fx(k)

and u.(k) denotes an additive excitation input for closed-loop identification. The estimated
state x(k) is prqvided by an existing obgqyer of the form

Rk +1) = AZ() + Bu(k) - Ga[y(k)  $(6)]
$(k) = Ci(k) + Duk)

The output y(k) is the system closed-loop response due to an excitation ug(k). OCID first
solves for the Markov parameters

el
D, and [_F](A+GC)H[B+GD -G}, k=1,2, .., p

from which a realization of A, B, C, G, and F will be computed and returned to the user.
Note that the matrices A, B, C, D are the system matrices and F is the existing feedback
controller gain as described above. The matrix G , however, is another observer gain

~associated with the identified system A, B, C, D. In general, this observer matrix gain G is
not the same as the existing oB%crver gain G, of the closed-loop system. The matrix G is
an observer gain for the observer given below

X(k +1) = A%(k) + Bu(k) - G[y(k) - 3(k)]
y(k) = Cx(k) + Du(k)

The function returns a, b, ¢, d, g, and f, which are a realization of A, B, C, D, G, and F.

Example:

Use test data from an aircraft flutter test. The items in italics is information prompted by the
function ocid which has to be answered by the user. The rest is just general information
returned by the function ocid. The following is output taken from a typical run.

load xsamp712
ue(1:600)=[1;,y(1:600)=[1;u(1:600)=[];
[m,n}=size(ue);

time=dt*[0:m-1]";
[a,b,c,d,g,fl=0cid(y,-u,ue,30,dt,300,'ocid’);

ERADC is used now.
The Hankel matrix size for ERADC is 30 by 62.
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Maximum Hankel singular value = 3.213077e+02
Minimum Hankel singular value = 2.251935¢-03

Hankel Matrix Singular Values
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Desired Model Order (O=stop)=: 2

Model Describes 98.9109 (%) of Test Data
Damping(%) Freq(HZ) ModeSV  MAC
-3.2239¢+00 9.1286e+00 1.0000e+00 9.9827¢-01
-3.2239e+00 9.1286e+00 1.0000e+00 9.9827e-01

=
Lh

Desired Model Order (O=stop)=: 4

Model Describes 99.4891 (%) of Test Data
Damping(%) Freq(HZ) ModeSV  MAC
2.2923e+01 1.1587e+01 5.7107e-02 9.8650e-01
2.2923e+01 1.1587¢+01 5.7107e-02 9.8650e-01
-2.8767e+00 8.8912¢+00 1.0000e+00 9.9987e-01
-2.8767e+00 8.8912¢+00 1.0000e+00 9.9987¢-01

Desired Model Order (O=stop)=: 8

Model Describes 99.829 (%) of Test Data

Damping(%) Freq(HZ) ModeSV  MAC
1.8507¢+01 1.9546e+01 1.2959¢-02 9.4607e-01
1.8507e+01 1.9546e+01 1.2959¢-02 9.4607¢-01
2.9880e+00 8.7176e+01 2.2222¢-02 9.8971e-01
2.9880e+00 8.7176e+01 2.2222e-02 9.8971e-01
1.6910e+01 1.1593e+01 9.2265e-02 9.9728e-01
1.6910e+01 1.1593e+01 9,2265¢-02 9.9728e-01
-3.3582e+00 8.8459¢+00 1.0000e+00 9.9995¢-01
-3.3582e+00 8.8459¢+00 1.0000e+00 9.9995e-01

Desired Model Order (O=stop)=: 0

Compare closed-loop reconst. and actual resp. (1=yes,0=no) 7:=1
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Actual vs. reconstructed feedback control input histories
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The solid lines represent the real data whereas the dashed lines mean the reconstructed data.
The predicted outputs are the reconstructed data from the identified system model only.
The estimated outputs are the reconstructed data from the identified observer. It is obvious
that the reconstructed data match the real data very well.

Algorithm:

Identification of the observer/controller Markov parameters for the system shown before is
obtained using a least-squares solution. The observer/controller Markov parameters are
identified first, from which the individual Markov parameters of the system, observer, and
controller are computed, and used to obtain a realized state space model and the observer
and controller gain matrices. For further details, see references.

See also:
arxc, mar_yoc, mar_oc, ryucovar, y_closed, separate
Reference:
[1] Juang, J. N. and Phan, M., "Identification of System, Observer, and Controller from

Closed-Loop Experimental Data," Presented at the AIAA Guidance, Navigation, and
Control Conference, Hilton Head, South Carolina, Aug. 10-12, 1992.
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okid,okid_b,okid_fb,okid_p

Purpose:

Identify a state space model and its corresponding observer from test data.

Synopsis: -
[a,b,c,d,g]%dl;ia(m,r,dt,u,y,descril;tiorn,p)

[a,b,c.d,g]=0kid_b(m,r.dty,description,p)

[af.bf cf.df,gf,ab,bb,cb,db,gbl=okid_fb(m,r,dt,u,y,description,p)

la,b,c,d,gl=0kid_p(m,r,dLy description,p)

Description:

The function [A,B,C,D,G)=okid(m,r,dt,u.y,description,p) identifies a state space model of
the form : ' S

x(k+1)=(A+GC)x(k)+[B+GD —G]{”(")}

y(k)
y(k) = Cx(k)+ Du(k)

with m outputs, r inputs, and time samples dr apart. Here A, B, C, D are system matrices
and G is referred to as the forward observer gain. The input variable description is a short
descriptive tag for the current data set being analyzed and also serves as a flag which is
described latter. The input/output time histories are stored as column matrices. For s
experiments, the input matrix « must contain s X r columns and the output matrix y s X m.
The number of rows in the input and output matrices equals the number of sample points.
Initially an estimate of the number of observer Markov parameters, p, must be specified.
For a given p, the maximum system order that can be identified is the product p xm. The
function will prompt the user at various points for information. After computing the
observer Markov parameters, the option to compute the prediction error is given. The
calculation of observer Markov parameters and the output prediction error is time consuming
when analyzing long records, therefore, it should only be used when necessary. For the
very first run, the observer Markov parameters and related parameters including p are stored
in the data file dokid_f for function file okid, dokid_b for okid_b, dokid_fb for okid_fb and
dokid_p for okid_p. The user will be prompted if he has already stored these parameters in
the data file. If he did, computation of these parameters will be by-passed. A plot of the
Hankel matrix singular values is shown to aid selecting the correct system order. The
number of non-zero singular values equals the system order. The magnitude of the Hankel
matrix singular values, arranged in descending order, measures the state contribution. For
noisy data, one has to make a judgement as to how many singular values to retain. After
selecting a particular order, the percentage of the response realized by the model is computed
using the singular values. In addition, the corresponding frequencies and damping values
are listed with the corresponding modal amplitude coherence factors. If the model is
acceptable, the computation is completed. The identified matrices A,B,C,D, and G are
returned to the main program. See references for detailed information.

The user is recommended to run the batch job for the first time so that he does not have to
wait for the computation of observer Markov parameters which may take time for a long
data record. The user may then come back to run the same job again interactively and use
the existing data record for the observer Markov parameters.
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The user is recommended to run the batch job for the first time so that he does not have to
wait for the computation of observer Markov parameters which may take time for a long
data record. The user may then come back to run the same job again interactively and use
the existing data record for the observer Markov parameters.

okid: It simultaneously identifies A, B, C, D and G directly from input/output data.
User's interaction is required to determine the order of the system by looking at the
singular values plot.

description = ‘batch’ ; It performs a batch job. The order of the system is
determined internally in the era function file and thus user's interaction is not
required.

description = 'lq’; It computes the system matrices, A, B, C, and D, first and then
the observer gain G using least-squares. Researchers who are interested in
identifying the system matrices only are recommended to use this function file.

okid_p: a modified version of okid. It uses pulse response samples, y, to simultaneously
identify A, B, C, D and G. No user inputs are required in this function file.

description = 'lq’ ; It computes the system matrices, A, B, C, and D, first and then
the observer gain G using least-squares. Researchers who are interested in
identifying the system matrices only are recommended to use this function file.

The identified system has the following form
x(k +1)= Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)
with its corresponding identified observer as

R(k+1) = AR(k) + Bu(k) - GLy(k) - 5(#)]
$(k) = CE(k) + Duk)

where x(k) is the estimate of the state x(k).

The function [A,B,C,D,Gl=okid_b(m,r,dt,u,y,description,p) identifies a state space model
of the form '
u(k)
X0y = (A" +GOxk+)+[-A"B GD G| utk+1)
y(k)
y(k) = Cx(k)+ Du(k)
with m outputs, r inputs, and time samples dr apart. All the input and output parameters of
this function are the same as those described above for the forward observer. Here A, B, C,

D are system matrices and G is referred to as the backward observer gain matrix. See
references for detailed information.
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okid_b: It simultaneously identifies A, B, C, D and G directly from input/output data.
User's interaction is required to determine the order of the system by looking at the
singular values plot.

description = ‘batch’ ; It performs a batch job. The order of the system is
determined internally in the era function file and thus user's interaction is not

required.

description = ‘lq’; It computes the system matrices, A, B, C, and D, first and
then the observer gain G using least-squares. Researchers who are interested in
identifying the system matrices only are recommended to use this function file.

The identified system is the same as above, whereas the observer becomes

#(k)y= A2k + 1)+ A7 Bu(k) - Gly(k +1) - 5k + 1)]
y(k) = Cx(k)+ Du(k)
where x(k) is the estimate of the state x(k). Note that the backward approach identifies the

inverse of the system state matrix whereas the forward approach identifies the system state
matrix directly. The advantage of the backward approach is that all the identified spurious
modes tend to be stable and the strong system modes to be unstable. Therefore when the
identified state matrix is inverted, the strong system modes become stable but the
computational modes become unstable. Nevertheless, experiences suggest that the
identified results are somewhat underestimated particularly when noises are high. To do
numerical simulations, functions modal and bk_diag may be used to reduce the identified
model to a stable model in the real domain.

The function [Af,Bf,Cf,Df,Gf,Ab,Bb,Cb,Db,Gbl=0kid_fb(m,r.dt,u,y,description,p)
identifies two state space models simultaneously using both the forward and backward
approach. The small cases f and b behind the capital characters means forward and
backward respectively. In this function, comparison of stable system modes in terms of
frequencies and dampings from these two models is provided to the user for his judgement
on how accurate the system modes are. The comparison is based on the error between the
forward system eigenvalues and backward system eigenvalues, and their singular value
contributions to the pulse response samples. The comparison provides the reduced output
forward model [Af,Bf,Cf,Df,Gf] and backward model [Ab,Bb,Cb,Db,Gb] where the state
matrices Af and Ab are both in block-diagonal form (see function bk_diag). Note that the
reduced modal observer may not be stable, since the modal reduction is not optimal in
general. In this case, the user is recommended to use function okid to identify a system
mode! and then reduced by other methods such as the optimal projection or balanced
coordinates. The function okid_fb is strongly recommeded for those users who do not care
about the observer identification. With the same order of observer markov parameters, it is
believed that the forward approach provides the identified results with better accuracy. The
forward model is in general larger in size than the backward model. The backward
approach may miss some system modes particularly with light damping. However, it
provides information of strong system modes.
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Example :

Use test data from a truss structure. The items in italics is information prompted by the
function which has to be answered by the user. The rest is just general information returned
by the function. The following is output taken from a typical run.

load xsample
[a,b,c,d,m]=0kid_fb(n,r,dt,u,y,'okid_fb',20);

Total number of sample points = 2000

Number of experiments in file = 1

Number of inputs = 2

Number of outputs =2

Compute Observer Paramters For Data Set Number 1
Time (min) to compute parameters 4.114

Have you run OKID_FB with the same data & P before (1=yes,0=no) ?:=0

Compute Forward and Backward Error (1=yes,0=no)? =: 1
Compute Prediction Error For Data Set Number 1
Forward Square Fitting Error Normalized

7.2631e-02 -4.8648¢-02

-4.8648e-02 1.1211e-01
Backward Square Fitting Error Normalized

1.5161e-01 -4.6554e-02

-4.6554¢-02 1.4184¢-01
Time (min) to Markov parameters 0.1517

0 200 400 600 800 1000 12b0 14100 16b0 1860 2000
Time Steps

L

600 800 1000 1200 1400 1600 1800 2000

Norm. Smoh. Error
o

S
ON
31
48%
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THE FOLLOWING COMPUTES A DISCRETE MODEL FROM A FORWARD OBSERVER.

SV Magnitude

103

102

101

100

101

102

103

104
0

_****'

Hankel Matrix Singular Values

X X
X
X %

Xy

X % %
****

10

9.8448¢+00
9.8448e+00
7.4294¢+00
7.4294¢+00
5.1193¢+00
5.1193¢+00
1.7537e+01
1.7537¢+01
1.1365¢+01
1.1365¢+01
1.7740¢+01
1.7740¢+01
1.9292¢+00
1.9292e¢+00
3.4358¢+00
3.4358c+00
1.4563e+00
1.4563e+00
6.7864¢-01
6.7864¢-01
4.2429¢-01
4.2429¢-01
3.1829¢-01
3.1829¢-01
3.9005¢-01
3.9005¢-01

15

20

Number

Desired Model Order (O=stop)=: 26
Model Describes 99.9924 (%) of Test Data
Damping(%) Freq(HZ)

9.7606¢+01
9.7606e+01
1.1862¢+02
1.1862¢+02
1.0573e+02
1.0573e+02
2.2577c¢+01
2.2577c¢+01
3.3578¢+01
3.3578¢+01
1.9096¢+401
1.9096¢+01
1.1410e+02
1.1410e+02
6.1287¢+01
6.1287¢+01
4.6591c+01
4.6591c¢+01
7.4241¢+01
7.4241e401
4.8646¢+01
4.8646¢+01
7.2733e+00
7.2733¢+00
5.8479¢+00
5.8479¢+00

Mode SV
3.0499¢-03
3.0499¢-03
2.2901e-02
2.2901e-02
7.2535¢-03
7.2535¢-03
2.3866¢-03
2.3866¢-03
9.4557¢-04
9.4557¢-04
1.4288c-03
1.4288¢-03
44511e-02
4.4511e-02
1.6785¢-03
1.6785¢-03
1.2229¢-02
1.2229¢-02

4.4470¢-03
4.4470¢-03
6.9666¢-02
6.9666¢-02
4.8384¢-01
4.8384¢-01
1.0000¢+00
1.0000c+00

Desired Model Order (O=stop)=: 0
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25

30

MAC
9.9677¢-01
9.9677e-01
9.9957¢-01
9.9957e-01
9.9891e-01
9.9891¢-01
9.9869¢-01
9.9869%¢-01
9.8801¢-01
9.8801e-01
9.9687¢-01
9.9687¢-01
9.9999¢-01
9.9999¢-01
9.9893¢-01
9.9893¢-01
9.9996¢-01
9,9996¢-01

9.9929¢-01
9.9929¢-01
1.0000e+00
1.0000¢+00
1.0000¢+00
1.0000e+00
1.0000¢+00
1.0000¢+00




THE FOLLOWING COMPUTES A DISCRETE MODEL FROM A BACKWARD OBSERVER.

1013

1010

SV Magnitude
2 2

p—
1=

10-2

105

Hankel Matrix Singular Values

ISR B LI IS R IS R RIS N RRL]l B AR

»*
*

¥k x x
¥ X X X X
X *****
***
0 5 10 15 20 25 30 35
Number

Desired Model Order (0=stop)=: 26
Model Describes 100 (%) of Test Data
Damping(%) Freq(HZ)

8.7805¢+00
8.7805¢+00
6.9248e+00
6.9248e+00
5.7392¢400
5.7392¢+00
1.9648¢+00
1.9648¢+00
7.0426e+00
7.0426e+00
2.6303¢+00
2.6303e+00
4.7085¢+00
4.7085e+00
1.8700c¢+00
1.8700c¢+00
6.9673¢-01
6.9673¢-01
4.2593¢-01
4.2593¢-01
-8.8086¢-01
-8.8086¢-01
-9.3811e-01
-9.3811e-01
-1.9640¢+01
-1.9640¢c+01

1.0444¢+02
1.0444¢+02
1.1904e+02
1.1904e+02
1.0529¢+02
1.0529¢+02
1.1406¢+02
1.1406¢+02
3.1259¢+01
3.1259¢+01
6.1469¢+01
6.1469¢+01
1.9505¢+01
1.9505¢+01
4.6542¢+01
4.6542¢+01
7.4489¢+01
7.4489¢+401
4.8600c+01
4.8600c+01
5.8583¢+00
5.8583¢+00
7.3066¢+00
7.3066e+00
1.4194¢+01
1.4194¢401

Modc SV _
1.5233e-02
1.5233¢-02
5.8056¢-02
5.8056e-02
2.2203e-02
2.2203¢-02
8.8767¢-02
8.8767¢-02
2.6690¢-03
2.6690e-03
2.4191e-03
2.4191e-03
1.6134¢-02
1.6134e-02
2.1705¢-02
2.1705¢-02

MAC
9.9862¢-01
9.9862¢-01
9.9986¢-01
9.9986e-01
9.9896¢-01
9.9896e-01

1.0000¢+00
1.0000e+00
9.8609e¢-01
9.8609¢-01
9.9780¢-01
9.9780¢-01
9.9995¢-01
9.9995¢-01
9.9976¢-01
9.9976¢-01

4.6185¢-03 9.9365¢-01
4.6185¢-03 9.9365¢-01
8.9072¢-02 9.9999¢-01
8.9072¢-02 9.9999¢-01

1.0000¢+00 1.0000e+00
1.0000e+00 1.0000e+00

3.9005¢-01 9.9999¢-01
3.9005¢-01 9.9999¢-01

3.1534e-02 1.0000e+00
3.1534¢-02  1.0000e+00

Desired Model Order (O=stop)=:0
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COMPARISON OF FORWARD AND BACKWARD IDENTIFICATION

Forward Identification
Mode SV Damping(%) Freq(hz)

Damping(%) Freq(hz)
1.9096¢

1.7740e+01

1.7740e+01
3.4358e+00
3.4358e+00
1.7537e+01
1.7537¢+01
1.4563¢+00
1.4563e+00
6.7864¢-01

6.7864¢-01

9.8448e+00
9.8448e+00
5.1193e+00
5.1193e+00
4.2429¢-01

4.2429¢-01

7.4294¢e+00
7.4294e+00
1.9292e+00
1.9292e+00

+01
1.9096e+01
6.1287e+01
6.1287e+01
2.2577e+01
2.2577e+01
4.6591e+01
4.6591e+01
7.4241e+01
7.4241e+01
9.7606e+01
9.7606e+01
1.0573e+02
1.0573e+02
4.8646e+01

" 4.8646e+01

1.1862e+02
1.1862e+02
1.1410e+02
1.1410e+02

1.8532¢-03
1.8532¢-03
3.2029¢-03
3.2029¢-03
3.2734¢-03
3.2734¢-03
1.3625¢-02
1.3625¢-02
1.7323e-02
1.7323¢-02
2.8269¢-02
2.8269€-02
5.7957¢-02
5.7957¢-02
7.3772e-02
7.3772¢-02
2.0175¢-01
2.0175¢-01
3.2723¢-01
3.2723¢-01

3.1829¢-01 7.2733e+00 4.4107e-01
3.1829¢-01 7.2733e+00 4.4107e-01
3.9005¢-01 5.8479e+00 1.0000e+00
3.9005¢-01 5.8479¢+00 1.0000e+00

Backward Identification

1.9640¢+01  1.4194¢+01
1.9640¢+01 1.4194e+01
93811e-01 7.3066e+00
9.3811e-01 7.3066e+00
8.8086¢-01 5.8583¢+00
8.8086¢-01 5.8583¢+00

These are the modes selected from forward and backward models

You should also examine the list of modes from the forward model
to see if there are some other modes left out from the above table.
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3.2081e-02
3.2081e-02
3.4642¢-01
3.4642¢-01
1.0000e+00
1.0000e+00



Predicted output

Predicted output

DATA RECONSTRUCTION FROM THE IDENTIFIED FORWARD MODEL
Compare Recons. Output and True output (1=yes,0=no) ?:= 1

Number of Sample Points to Reconstruct ?:= 1000
Comparison For Data Set Number No. 1
The following figures show predicted and real outputs

Output Number =1

| b

0 0.5 1 1.5 2 2.5 3 3.5 4
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The following figures show estimated and real outputs
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DATA RECONSTRUCTION FROM THE IDENTIFIED BACKWARD MODEL
Compare Recons. Output and True output (1=yes,0=no) ?:= 1

Number of Sample Points to Reconstruct ?:= 1000
Comparison For Data Set No. 1
The following figures show smoothed and real outputs

Output Number = 1
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The solid lines in the above figures represent the real data whereas the dashed lines mean the
reconstructed data. The predicted outputs are the reconstructed data from the identified
system model only. The estimated outputs are the reconstructed data from the identified
observer. It is obvious that the reconstructed data from the identified forward observer
match the real data much better than that from the identified model only. With the same
order chosen which is 26 in this example, the forward results are somewhat better than the
backward results (see the reconstructed predicted outputs). In this example, only three
stable modes (after the identified state matrix was inverted) are identified from the backward

approach.

Algorithm:

Identification of the pulse response (Markov parameters) for the observer system shown
before is obtained using singular value decomposition. The forward or backward observer
is identified first, as opposed to the system itself, such that the observer has all its poles
placed at the origin. From this, the system Markov parameters (pulse response) are
recovered and used in system realization. Theoretically, there are only a specific number of
independent system Markov parameters for a finite set of observer Markov parameters.
Therefore a minimum number of system Markov parameters may be used in the function era
or eradc to minimize the computational time in identifying the system. Nevertheless, it
seems from experience that a little larger number than the minimum one for the system
Markov parameters help a little bit for the identification of system with very low damping.
The realization algorithm provides a state space model and permits the evaluation of different
system orders. Order selection is guided by the singular values of a Hankel matrix, but for
test data it is up to the user to decide. For details see references.

See also:

arx_b, arx_bat, arx_fb, era, eradc, k_abcd, mar_com, match, pred_err, svmp, uy_stack,
yucovar

References:
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[2]

(3]

[4]
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Identification and Model Reduction,” Journal of Guidance, Control, and Dynamics, Vol. 8,
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Juang, J.-N., Cooper, J. E., and Wright, J. R,, "An Eigensystem Realization Algorithm
Using Data Correlations (ERA/DC) for Modal Parameter Identification,” Control-Theory and
Advanced Technology, Vol. 4, No. 1, 1988, pp. 5-14.

Juang, J.-N., Horta, L. G., and Longman, R. W., "Input/Output System Identification:
Learning From Repeated Experiments,” Mechanics and Control of Large Space Structures
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Vol 29, 1990, pp. 87-99.

Chen, C. W, Huang, J.-K., Phan, M., and Juang, J.-N.,"Integrated System Identification
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p2m

Purpose:

Rearrange pulse response time histories in the form of Markov parameters séqueénce.

Synopsis:

Y,=p2m(Yp,r)

Description:

Given a discrete model

x(k +1) = Ax(k)+ Bu(k)
) y(k) = Cx(k)+ Du(k)

with r inputs and m outputs, the pulse response samples are typically stored as

sz[)’I Y Yo - _ym']

where y,= response samples due to a unit pulse at the i-th input. Each y, has m columns
and £ rows where ¢ is the length of data. The sequence of system Markov parameters is
defined as

Y,=[D CB CAB - CA“’B]

The sequences Y, and Y, are equivalent in the sense that both represent pulse response
samples. The function converts Y, to Y,,. Note that ¥, is the sequence used in the eradc
and era functions.

See also:

m2p, okid, okid_b, okid_fb
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peradc
Purpose:

Calculate variance and bias of the ERA/DC identified parameters.
Synopsis:

[eg,vp,yw,bp,bw,sg,vsg,bsgl=peradc(y,n,nm,nr.dt);
Description:

The function peradc calculates the variance and bias of the single-input and single-output
eradc identified parameters from pulse response samples. The column vector y is the pulse
response samples in which the ith element of y is the unit pulse response at discrete time i.
Scalar n specifies the identified model order. Scalar nm(nr) specifies the number of rows
(columns) of a Hankel matrix. In peradc, nr is required to be larger than or equal to nm.
Scalar dr specifies the data sampling interval.

leg.vp,vw,bp,bw,sg,vsg,bsgl=peradc(y,n,nm,nr,dt) returns the variance and quadratic
bias of the eradc identified parameters. The elements of vector eg are the eigenvalues of the
eradc identified model. Vector vp (vw) is the variance of the eradc identified dampings
(frequencies) corresponding to eigenvalue vector eg. Vector bp (bw) is the quadratic bias of
the eradc identified dampings (frequencies) corresponding to eigenvalue vector eg. Vector
sg is the singular value vector of the correlation matrix in eradc. The elements in vector vsg
(bsg) is the normalized variance (quadratic bias) of the singular values in sg.

Example:

Calculate the variance and bias of the eradc identified parameters from the noisy pulse
response samples of a single-input single-output second-order system with sampling
interval dr=0.2, natural frequency @, =1, and damping factor { =0.1.

a=[0 1;-1-0.2]; b=[0;1];c=[1 0};d=0;
pt=100;dt=0.2;t=[dt:dt:pt*dt]’;
u=zeros(pt,1);u(1,1)=1.0;

y=Isim(a,b,c,d,u,t);

rand(‘'normal’)

y=y+0.04*rand(pt,1);
[eg,vp,vw,bp,bw,sg,vsg,bsgl=peradc(y,4,10,20,dr),
€g

clg

subplot(221)

bar(vw),title(Frequency variance’)
bar(vp),title('Damping variance’)
bar(bw),title(‘Frequency bias")
bar(bp),title('Damping bias’)

pause

clg

subplot(121)

bar(vsg),title('Variance of singular values’)
bar(bsg),title('Quadratic bias of singular values’)
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Algorithm:

The function peradc uses the algorithm from [Longman89,91]. In peradc the perturbation
theory is applied to estimate the variance and quadratic bias of the ERA/DC identified
parameters. .

See also:
monera, eradc
References:
[1] Longman R W, Bcrgman M. and Juang, J. N., "Variance and Bias Confidence Criteria

for ERA Modal Parameter Identification,” Proceedmgs of the 1988 AAS/AIAA
Astrodynamncs Spec:ahst Conference aneapohs Minnesota, August 1988

[2] Longman R W Lew J S, Tseng, D H and Juaﬁg; J. N “Vanancc and Bias
Computation for Improved Modal Identification Using ERA/DC,” Proceedmgs of the 1991
American Control Conference, Boston, MA, June 1991. ]
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pred_efb, pred_erb, pred_err
Purpose:

Compute the prediction error based on identified parameters.

Synopsis:

[errorf,yhatfl=pred_err(u,y,Yf,p flag)
[errorb,yhatb)=pred_err(u,y,Yb,p flag)
[errorf,yhatf, errorb,yhatb]l=pred_err(u,y,Yf,Yb,p flag)

Description:

Given the input matrix u of dimension / x r, the output matrix y dimension / x m, and an
estimate of p forward observer Markov parameters stored in Y7, the forward prediction error

computed in matrix form is
e=y,~ YV,
where
Y, =1(0)yd)---y(-1)]
Y,=[D CB CAB - CA"'B]
u@ u) w2) --- wl-1)
vi0) v(I) - v(i-2)

vi) - v(l-p-1)
u(i)

) = s i=0,1,...,1-1
v(i) [y(i)] i

See functions okid and arx_bat for the definition of matrices shown above. The number of
samples is / and the system has m outputs and r inputs. The computation is performed
within a loop to reduce storage requirements at the expense of computation time. For cases
where memory is not a problem flag=1 yields faster computation time. The function
pred_err returns the prediction error in the vector errorf and the estimated measurement y in

the vector yhatf.

Given an estimate of p backward observer Markov parameters stored in Y, , the backward
smoothing error computed in matrix form is

eb = Xb - Yb‘/b
where
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=y(0)y(1)---y(I - p-2)]
Y,=[D+CB CA*'[GD -G| CA**[AB+GD -G| - C[AB+GD G|

u(0) u(l) u) - ull-p-2)
L _|P veEd vpr2) o va-2)
v(l) v(2) v(3 - v(l-p-1

wi) = ["(i,)]; i=0,1,..,1-1
y(i)

See functions arx_b, arx_fb, okid_b and okid_fb for definition of the matrices shown
above. The function pred_erb returns the backward smoothing error in the vector errorb
and the smoothed measurement y in the vector yhatf.

Due to the strong similarity between the matrices V, and V, , the forward and backward
errors may be computed simultaneously. The function pred_efb returns the prediction error
in the vector errorf, the smoothing error in errorb, the estimated measurement y in yhatf,
and the smoothed measurement y in yhatb.

Example:

m=1;r=1;p=2;L=5;flag=1;
a=[0-0.16; 1 -1]; b=[0 1] c=[0 1}]; d=0; G=[0.16 17]’;
u=rand(L,r);
y=dlsim(a,b,c,d,u);
abar=a+G*c;bbar=[b+G*d -G];
Y=[d c*bbar c*abar*bbar];
[error,yhat]=pred_err(u,y,Y,p.flag);
See also:

arx_bat
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pulse

Purpose:

Compute pulse response histories from general input and output data.

Synopsis:

[ys,yol=pulse(m,r.dt,u,y,p,n_pulse,description),

Descrirption:

The function pulse computes the unit pulse response samples (Markov parameters) from
input and output time histories by using a time domain approach. The system input and
output histories u(t) and y(t) must be stored as follows

up(0) - uy(0) - w(0) - (0)

u () up (1) us(1) Uys(1)

u=| u(2) o uy(2) e wg(2) e ug(2)
y(=1) o wgU=1) o =1 = uU-1)]
[ y11(0) o Y (0) e Y (0) s Y (0) ]
) Ym (D) Ns() Yms (1)

y={ mi2) o oy o (2) e Ye(2)
=10 - Y= - oy (=1 - Y (I-1)]

where r is the number of inputs and m is the number of outputs, and u,(r)(y;(¢)) is the i-th
input (output) of the j-th test at discrete time . Multiple experiments are allowed in using
this function file. The input variable p is the desired number of independent observer
Markov parameters to be identified from input and output time histories. Given the desired
number p, the maximum number of the system order is p*m. The input variable n_pulse is
the desired length of the pulse response time histories to be computed. The input variable
description is a short descriptive tag for the current data set being analyzed and also serves
as a flag. If description = ‘inverse’, it computes the pulse response histories for the
backward model which can be used to realize the inverse of a system state matrix (see
description for function okid_b). This function works for stable and unstable systems. All
calculations are performed in the time-domain. The output of this function is the system
pulse response histories ys of dimension n_pulse by mr and the observer pulse response
histories yo. of dimension n_pulse by mm.

Example:

This example is to identify the pulse response time histories of a three-mass-spring-dashpot
system from two-input and one-output data.

k1=1.0;k2=2.0;k3=3.0;

ml=1.0;m2=1.0;m3=1.0;ratio=2*0.005;
K=[k1+k2 -k2 0;-k2 k2+k3 -k3; 0 -k3 Kk3];
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Khalf=sqrtm(K);Damp=ratio*Khalf;

Ac=[zeros(3,3) eye(3,3);-K -Damp];

Bc=[zeros(3,2);10; 0 1; 00J;

C=[zeros(1,5) 1];

dt=1.0;pt=200;p=10;

[m,n}=size(C);[n,r]=size(Bc);

D=zeros(m,r);

t=[dt:dt:pt*dt]’; -

[A,B]=c2d(Ac,Bc,dt);

rand('normal’);

u=rand(pt,r);y=dlsim(A,B,C,D,u);
[ys.yol=pulse(m,r,dt,u,y,p,pt,'pulse’); o
%[ys,yo]=pulse(m,r,dt,u,y,p,pt,'inversc');%for backward only

Algorithm:

This is a time-domain approach. First, the forward or backward observer Markov
parameters are identified (see arx_bat, arx_b), as opposed to the system itself, such that the
corresponding observer has all its poles placed at the origin. From these identified observer
Markov parameters, the system pulse response is recovered (see mar_com). For details see
references.

See also:
arx_bat,arx_b,mar_com,m2p,okid,okid_b
References:
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ryucovar

Purpose:

Compute the left correlation matrix associated with the feedback control input for
observer/controller identification.

Synopsis:
[ufbVi] = ryucovar(y,ufb,ue,p)

Description:
The data is stored as column matrices. For a system with m outputs, the closed-loop
output data matrix y contains m columns and as many rows as the number of data points

available. The data matrix ufb contains the feedback control signal, ue contains the additive
excitation input signal in the same format as y. Let the given data be arranged as

Y=[y0) y) y2) - y(N-1)]
Up=[up0) up(D) uy(2) - uy(N=1) |
R=[u(0) u() u(2) - u(N-1)]

The function ryucovar computes the following correlation matrix

ufth = Uﬂ,VT
where the data matrix V is defined as
[u(0) u(l) u(2) -~ u(p) u(p+1) - wN-1) ]
z2(0) z(1) - z2p-1)  z(p) - zZ(N-2)
V= z(0) --- z(p-2) z2(p-1) -+ z2N-3)
i 2(0) z(1) -+ Z(N-p-1)]
and z(k) is defined as
) [u,.,u«) + u.(k)]
(k)

As indicated, the number N specifies the number of data points to be used in the
computation. N can be less than the total number of data points available in ufb, ue, and y.
The matrix product returned by the function is used in the computation of the
observer/controller Markov parameters in the function ocid. '
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Example:
ufb=[1-21313456],;
y=[032131446],
ue-[ 102-123507],
[ufbVt] = ryucovar(y,ufb, ue 2)
ufbVi =
70 42 23 15 26
Algorithm:

To save memory space, the summations involved in the product U,V are performed usmg
inner matrix product multiplication.

See also:

ocid, arxc, mar_yoc, mar_oc, y_closed, separate
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separate
Purpose:

Separate a given matrix sequence into two sequences with prescribed formats.
Synopsis:

[Y1,Y2]=separate(Y,qm1,m2)
Description:

Given a matrix Y in the following format
Y=[n@) Y(2) K@) K@) - - L) Y.(2)
this function returns Y1 and Y2 which are
Yi=[r(1) %) - Y.()]

Y2=[%(2) L) - Y.(2)]
Each Y;(1) has dimensions ¢ x ml, and each Y;(2) has dimensions g xm2.
Example:
Y=rand(2,9)

Y=
Columns 1 through 7

09304 05269 0.6539 0.7012 0.7622 0.0475 0.3282
0.8462 0.0920 0.4160 0.9103 0.2625 0.7361 0.6326

Columns 8 through 9

0.7564 0.3653
0.9910 0.2470

[Y1,Y2]=separate(Y,2,1,2)
Yi=

0.9304 0.7012 0.3282
0.8462 09103 0.6326

Y2=

0.5269 0.6539 0.7622 0.0475 0.7564 0.3653
0.0920 04160 0.2625 0.7361 0.9910 0.2470

See also:

arxc, mar_yoc, mar_oc, ocid, ryucovar, y_closed
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Ssvpm
Purpose:

Compute modal observability matrix and singular values of the modal participation to the
pulse response samples.

Synopsis:
[svm, obsm]=svpm(lambda,bm,cm,n)
Description:

Consider the discrete model in the modal coordinates

x, (k +1)= Ax_ (k) + B, u(k)
y =C_x(k)+ Du(k)

with r inputs and m outputs, where A is a diagonal matrix containing the eigenvalues,
A,(i=1,2,...,n), of the system matrix. The modal observability matrix is computed by

n-1
CAS

Function [svm, obsm]l=svpm(lambda,bm,cm,n) returns the complex modal
observability matrix and a normalized singular value vector sym (see algorithm) to
quantify the importance of each individual mode, for given system eigenvalues in the
vector lambda, the modal input matrix bm, modal output matrix cm and the desired
length n. Note that the maximum singular value is used to normalize the vector svm.

Example:
A three-mass-spring-dashpot system from two-input and three-output data is used.

k1=1.0;k2=2.0;k3=3.0;
m1=1.0;m2=1.0;m3=1.0;ratio=2*0.005;
K=[k1+k2 -k2 0;-k2k2+k3-k3;0 -k3 k3];
Khalf=sqrtm(K); Damp=ratio*Khalf;
Ac=[zeros(3,3) eye(3,3);-K -Damp};
Bc=[zeros(3,2);10;0 1; 00},

C=|zeros(3,3) eye(3,3)];

dt=1.0;pt=60;

[A,B]=c2d(Ac,Bc,dt);

[V,Jambda]=ecig(A);
bm=V\B;cm=C*V;lambda=diag(lambda);
[sv,obsvm] = svpm(lambda,bm,cm,6);

sv'

sv' = 0.2898 0.2898 1.0000 1.0000 0.1506 0.1506
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Algorithm:

For a linear system, the map from input u to output y can be fully described by the
Markov parameter sequence

Y,=[p c,B, CAB, - C,A7B,]

This sequence is coordinate independent and unique. Let the input and output matrices

be partitioned as
b
B, = b:z Co=le ¢ - cl
b

where n is the number of modal coordinates, b; (i=1,2,...,n) a row vector of length r
and c; a column vector of length m. Each individual Markov parameter can then be
written as a combination of n components contributed from different modal coordinates.

C.,AB, = ic‘}lib,.
i=1

Therefore, each coordinate has a sequence of Markov parameters described as follows
Y,=[0 c¢b CAB, -+ CATB]i=12,..,n

The total Markov parameter sequence becomes
Y,=) Y Yo=[D 0 0 - 0]
i=0

From this representation, it is obvious that each modal coordinate contributes to the
pulse response sample by the individual modal sequence Y,;, which can be quantified
by taking its maximum singular value, i.e.,

sym= .\ﬂC—J(l-HA,l"H 1?|++llf_2|)‘\jl—b_;l = M\/i—bj (1-—Illl)

where |4,] is assumed to be less than 1.

See also:

era, eradc, match
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svra
Purpose:
Identify a state space model from input and output data via a state vector realization
algorithm, e -

Synopsis:
la.b,c.deg.sgl=svratuynnmnrdeby, . . . .. . . . -
ﬁescriptioﬁ: |

The function svra identifies a state-space model of a multi-input and multi-output linear,
time-invariant system from a set of rich input response data. The i-th row vector of matrix u
(») is the system input (output) at discrete time i. Scalar n specifies the identified model
order. Scalar nm specifies the number of sample shift in constructing the rows of a Hankel
matrix and it is required to be even, whereas nr specifies the column number of the Hankel
matrix. Integers nm X m(m is the number of outputs) and nr are required to be not smaller
than the chosen model order n. Also, n+nm X r(r is the number of inputs) needs to be
smaller than nr. Scalar df denotes the data sampling interval, and the data used for realization
starts from the k-th discrete time. [A,B,C,D,eg,sgl=svra(u,y,n,nm,nr dt,k flag) returns an
nth-order linear, time-invariant identified discrete model:

x(k+1)= Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)

Vector eg contains modal parameters of the identified model including frequencies (Hz) in
the first column and damping ratios (%) in the second column. The third column of eg gives
the eigenvalues of the corresponding continuous time model. Note the identified discrete
model can be easily transformed to a continuous time model. Vector sg, whose elements are
singular values of the Hankel matrix, can be used as reference to choose the model order n.

Examples:

i) Use svra to identify a system model from a set of random input response data for a single
input, single output second order system with sampling interval dr=0.3, natural frequency
®, =1, and damping factor { =0.1.

ii) Transfer the identified discrete model to a continuous-time model and plot the original
system output and the output from the svra identified model.
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a=[0 1;-1 -0.2]; b=[0;1];c=[1 0};d=0;
pt=100;dt=0.4;t=[dt:dt:dt"'pt]’;
rand('normal’);

u=rand(pt,1);

y=lIsim(a,b,c,d,u,t);
[al,bl,c1,d1,sg.egl=svra(u,y,2,20,40,dt,10);
yl=dlsim(al,bl,c1,d1,u);

y2=[y y1l;

clg

plot(y2),title(Random input response’)
pause

error=y-yl;

clg

plot(error),title('Error’)

pause

Sg

Algorithm:

The function svra uses the state vector realization algorithm from [Moonen89 Lew91]. It
uses output and input data to form the measurement matrix as

Uy U1 Ui

Yk Yeer 0 Ykanr-l

Uy s Uey2 ™ Besnr

H={ Y1 Y2 0 Vkaw
Ugsnm-t Yksnm " Wktnminr-2
| Yi+nm-1 Yeinm " Yktnminr-2 ]

where u;j and y; denote r-dimensional input vector and m-dimensional output vector at time
i, respectively. In svra, the SVD of H is used for a state vector realization [Moonen89], i.c.

Xyyi XpsisrwesXnajor Xeejs J >> 1. Tt then uses the following equation

Xevit 77 Kaaj | (A BY Xy v Xuja
Yesi 7 Maajnr C DAUi = Wj
to identify a state-space model.

References:

[1]1 Moonen, M., Demoor, B., Vandenberghe, L. and Vandewalle, J., "On- and Off-Line
Identification of Linear State-Space Models," International Journal of Control, Vol. 49,
1989, pp 219-232.

(2] Lew, J. S., Juang, J. N. and Longman, R. W., "Comparison of Several System
Identification Methods for Flexible Structures,” Proceedings of the 32nd Structures,
Structural Dynamics and Materials Conference, Baltimore, MD, April 1991, pp. 2304-
2318.
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uy_stack
Purpose:

Compute a stacked matrix with inputs and outputs.
Synopsis:

[vst]=uy_stack(u,y,p)
Description:

Given a set of data with / samples, r inputs, m outputs, and an assumed system order of
p*m, the function stacks a matrix using the inputs and outputs as follows

u() u(l) u(2) - u(l-1)
vio) v() -~ v(i-2)

vi0) -~ v(-p-1)

u(i)
)= ;. i=0,1,...,1-1
VQ) [y(i)] i

The matrix dimension is [(r + m)p + r] x1

Example:
u=[012345],
y=[67 89 10 11];
[\-l_sti=uy_stack(u,y,p)
VSt =
0 1 2 3 4 5
0 0 1 2 3 4
0 6 7 8 9 10
0O 0 0 1 2 3
0O 0 6 7 8 9

See also:

arx_bat
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y_closed

Purpose:

Reconstruct feedback control input and closed-loop response using ocid-identified system,
observer gain, and controller gain matrices. '

Synopsis:

[ufb_rec.y_recl=y_closed(A,B,C.D,G F.y,ufb,ue)

Description:

The function reconstructs the data histories ufb and y using the ocid-identified system
matrices A, B, C, D, identified observer gain G, and identified existing controller gain F.
The reconstructed ﬁ,,,(k) , y(k) stored as column matrices in ufb_rec, y_rec, respectively,
are computed from the following equations.

£(k +1)= (A + GC)Z(k) + (B +GD)[up (k) + u, (k)] - Gy(k)
$k) = C(k) + Dluy (k) +u, (K)]
i1 (k) = —F3(k)

Note that the above state equation equation is the same as the usual observer equation
expressed in terms of the prediction error y(k) — y(k)

Rk +1) = AR(K) + Bup (k) +u, (k)] - G[y(k) - (k)]
= AR(K)+ Blugy (k) + 1,(0)] - Gy(k) + G{CR(k) + Dlu, (k) + u,(k)]}
= (A +GO)i(k) + (B +GD)[uy (k) +u, (k)] - Gy(k)

Algorithm:

The function is programmed using a Matlab function dlsim.

See also:

ocid
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Purpose:

y_esti

Compute estimated outputs using an identified observer.

Synopsis:

[t.yhat]=y_esti(a,b,c,d,G,u.y,dt,npts flag)

Description:

Any typical observer has the following form

A(k+1)= AR(k) + Bu(k) ~ Gly(k) - 5(K)]
y(k) = Cx(k)+ Du(k)

where x(k) is the estimate of the state x(k) and y(k) is the estimate of the output y(k). The
system matrices A, B, C, D, and the gain matrix G may be identified from input data u(k)
and output data y(k) using the function eokid. The function
[t.yhatl=y_esti(A,B,C,D,G,u,y,dt,npts flag) returns a column vector, ¢, for the time period
corresponding to the desired number of sample points (npts), and an npts X m matrix, yhat,
for the estimated outputs. The flag is set to 1 for plotting. The user will be prompted with
the desired number of sample points to be reconstructed. Plots will be given to show the
comparison between the real test outputs and the estimated outputs.

See also:

okid, okid_b, okid_fb, y_pred
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y_pred
Purpose:

Compute predicted outputs using an identified system model.
Synopsis:
[t,yhat]=y_pred(a,b,c,d,u,y,dtnpts flag)
Description: |
The identified discrete system with the sampling time, d¢, has the following form

x(k+1)= Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)

where x(k) is the state vector. The system matrices A, B, C, D, and the gain matrix may be
identified from input data u(k) and output data y(k) using the function okid. The function
[t,yhat]l=y_pred(A,B,C,D,u,y,dt,npts flag) returns a column vector, ¢, for the time period
corresponding to the desired number of sample points (npts), and an npts x m matrix, yhat,
for the reconstructed outputs. The outputs y(k) are used here for comparison with the
reconstructed outputs. The flag is set to 1 for plotting. The user will be prompted with the
desired number of sample points to be reconstructed. Plots will be given to show the
comparison between the real test outputs and the reconstructed outputs.

See also:

okid, okid_b, okid_fb, y_esti
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yucovar, yucovfb, yucov_b
Purpose:

Compute the left and right correlation matrices for least squares identification problem.
Synopsis:

| ybarf,vbar;f]=yuéovar(u,y,p,ﬂag) RESEREE

[ybarb,vbarbl=yucov_b(u,y,p)

[ybarf,vbarf, ybarb, vbarbl=yucovfb(u,y,p)

Description: -~ ——— e

Given [ sample points of a system with m outputs, r inputs, and an assumed system order
of p*m, the input matrix u is of dimension / x r whereas the output matrix y is / x m. The
flag is set to 1 for long histories. Let y, be partitioned as

y,=[0) y» y2) - y-nj

where each measurement y(i)(i=1,2,...) has the dimension mx1. The least squares
problem for the forward observer Markov parameters is posed as

T T
y Ve =vV,y,

The matrices y V,T and y V[T have the same structure as the cross and auto correlation as
seen in the following

1-1 1-2 1-p-1
szf’=[§y<i)u’a) YDV - gy(iw)v’(i)]

-

C -1 1-2 -3 I-p-1
% u(iu? (i) ¥ uli+1pwT ) SuG @ - S uepT )
0 20 9 9
Y vl (i+1) ¥ viw! () Y vGewT ) - E v(i+p-1vT (i)
vy T 123 i 2 159
I 3 Wi (i+2) T vipT (i+1) vy () § Wi+ p-2)v! (i)
i=0 =0 i=0 =0
I-p-1 P l-p-1 T epa
§ vinTip) 8 v G- & v Gep-2) o & vinTo)
L i=0 i=0 =0 i=0 ]
where
. u@®] . :
vid=| I i=0,1,..,I-1
y()

The summations are performed using inner products to reduce computational time.
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[ybarf,vbarfl=yucovar(u,y.p flag) returns Y, V and vV, T in ybarf and vbarf
respectively.

For the backward approach, let y, be partitioned as

=[)’(0) y y2) - y(l—p)];

where each measurementy(i)(i=1,2,...) has the dimension mx1. The least squares
problem for the backward observer Markov parameters is posed as

T T
AR AAA
The matrices be,,T and V,V,” have the same structure as the cross and auto correlation as
seen in the following

I-p I-p i-p
YVl =| Dyt @ Y YW+ p) e Y YW+
i=0 i=0

i=0

- I-p . I- I- 7
Fuin® 3wy +p) L uipT Gep-) X u@VT )
1 50 1550 150 1550
LGy 8 ol rp) B v gl o % wieppT D)
T |20 =0 i=0 =0
b ):: v(i+ p-1u’ (i) ZZ v(i+p-WT (i+p) ng(i+p—-l)yT(i+p—l) e 3 i gty T G4
i= : i= ) i= i i=0 .
l— : _ . . 'ER3: l_ M
Fve @ E i Gp) S v p-l) % v )
| =0 i=0 i=0 i=0 |

The summations are performed using inner products to reduce computational time.

[ybarb, vbarb]—yucov b(u,y,p) returns y V, T and V,V,”in ybarb and vbarb respectively.
Note that there is no flag in this function.

The strong similarity among these matrices y V IS AR v, and V,V, T suggests the
possibility of simultaneously computing them in one smgle uhction.

[ybarf,vbarf, ybarb,vbarb]=yucovfb(u,y,p) returns Y, v, A7 LI Y, V,” and V,V, in Ti
ybarf, vbarf, ybarb, and vbarb, respectively.
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Example:

y=[567 8 9]
p=2.flag=0;

[ybar,ubar]=yucovar(u,y.p,flag)

ybar =
- 80 50 200 26 146
ubar= -

30 20 70 11 56

20 14 4 8 38
70 44 174 23 128

11 8 23 5 20 ..
56 38 128 20 110

See also:

arx_bat, arx_b, arx_fb
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yycovar
Purpose:

Compute the left and right output residual correlation matrices.

Synopsis:
[yvt,vvt]=yycovar(y,p,iexp)
Description:

Given [ sample points of a system with m output residuals (the stochastic part of the
system) and an assumed system order of p*m, the output residuals y is I x m. The flag is
set to 1 for long histories. Let y be partitioned as

y=[y©0) y1 y2) - y(-D}

where each y(i)(i=1,2,...) has the dimension m x1. The least squares problem for the
state estimator Markov parameters which whiten the residual is posed as

wh=rvw’

the matrices yV" and V¥ have the same structure as the cross and auto correlation as seen
in the followmg

W [2y(1+1)y 0) 2y(z+2>y @) - fymp)y’(i)]
i=0

=0

[ -2 1-3 -4 1-p-2 h
XY ) Y yE+1)y" ) SY+2yT@) e ¥+ p-1yT)
§=0 i=0 i=0 i=0

-3 -3 -4 -p—

S YOy +1) Xy 6) JYEHDYTE) £y<i+p—2)y’<z)
WT - 'i_=2 l_i=0 i=0_ i=0

Dy E+2) ):y(z)y (i+1) ey iy(wp 3)y" (i)

i=0 . i=0 i=0 i=0

1-p-2 : I-p- : -p-2 : ~p—

Lf,y(i)y’(wm S+ p-1 Sy 4 p-2) - f‘,y(i)y’(i)

i=0 i=0 i=0 i=0

where
y=[y1 y2) - y(-1)]

The summations are performed using inner products to reduce computational time.

[yvt,vvil=yycovar(y,p,iexp) returns yV ' and VVT respectively in yvt and vvi.
y y y
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Example: Some random numbers are created to verify the computation of this function.

rand('normal’);

y=rand(2,11);

v=[y(;,1:10)];

yl=y(;,2:11);

yl1*v'

ans =
-4.6867e-01 2.4383e+00
-1.0534e+00 -3.8444¢+00

v¥y'

ans = ,
2.4726e+00 -2.0860e+00
-2.0860e+00 1.3314¢+01

Y=Y’
{ybar,ubar]=yycovar(y,1,0)

ybar =

-4.6867¢-01 2.4383e+00
-1.0534e+00 -3.8444¢+00
ubar =

2.4726e+00 -2.0860e+00
-2.0860e+00 1.3314e+01

See also:

k_abcd, arx_bat
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